PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Holomorphic curves into projective spaces with some special hypersurfaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we establish some truncated second main theorems for holomorphic curves into projective spaces with some special hypersurfaces and give some applications. In addition, the defect relation, the algebraically degenerate conditions and uniqueness theorem for holomorphic curves with some special divisors may be improved.
Słowa kluczowe
Wydawca
Rocznik
Strony
art. no. 20230136
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Department of Mathematics, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China
autor
  • Department of Mathematics, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China
autor
  • School of Tourism, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China
Bibliografia
  • [1] M. Ru, Nevanlinna Theory and Its Relation to Diophantine Approximation, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2021.
  • [2] J. Noguchi and J. Winkelmann, Nevanlinna Theory in Several Complex Variables and Diophantine Approximation, Springer Science and Business Media, Tokyo, 2013.
  • [3] H. Cartan, Sur les zeros des combinaisions linearires de p fonctions holomorpes donnees, Mathematica 7 (1933), 80–103.
  • [4] A. È. Erëmenko and M. L. Sodin, Distribution of values of meromorphic functions and meromorphic curves from the standpoint of potential theory, Algebra Anal. 3 (1991), no. 1, 131–164.
  • [5] M. Ru, A defect relation for holomorphic curves intersecting hypersurfaces, Am. J. Math. 126 (2004), no. 1, 215–226.
  • [6] S. D. Quang, Degeneracy second main theorems for meromorphic mappings into projective varieties with hypersurfaces. Trans. Amer. Math. Soc. 371 (2019), no. 4, 2431–2453.
  • [7] S. D. Quang, Generalizations of degeneracy second main theorem and Schmidt’s subspace theorem. Pacific J. Math. 318 (2022), no. 1, 153–188.
  • [8] M. Ru, Holomorphic curves into algebraic varieties. Ann. Math. (2), 169 (2009), no. 1, 255–267.
  • [9] L. Yang, L. Shi, and X. Pang, Remarks to Cartan’s second main theorem for holomorphic curves into PN(C), Proc. Am. Math. Soc. 145 (2017), no. 8, 3437–3445.
  • [10] N. V. Thin, A note on Cartan’s second main theorem for holomorphic curve intersecting hypersurface. J. Math. Anal. Appl. 452 (2017), no. 1, 488–494.
  • [11] M. Green and Ph. Griffiths, Two applications of algebraic geometry to entire holomorphic mappings, In: The Chern Symposium 1979 (Proc. Inter. Sympos. Beckeley, California (1979), Springer-Verlag, New York, 1980, pp. 41–74.
  • [12] L. Darondeau, On the logarithmic Green-Griffiths conjecture, Int. Math. Res. Not. 2016 (2016), no. 6, 1871–1923.
  • [13] D. T. Huynh, D. V. Vu, and S. Y. Xie, Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree, Annales de la Institut Fourier 69 (2019), no. 2, 653–671.
  • [14] A. Nadel, Hyperbolic surfaces in P3, Duke Math. 58 (1989), 749–771.
  • [15] V. D. Waerden, Algebra, vol. 2, 7th ed., Springer-Verlag, New York, 1991.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6bf0ddd3-9a5b-4dfc-8e9f-a2a2dc5c1233
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.