PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimizing the application of biochar to improve irrigation efficiency and enhance the growth of chili plants in loam soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Drought significantly threatens crop production by causing groundwater deficits, which hinder plant growth and development. Biochar has demonstrated its potential to improve soil water and nutrient retention. The study aimed to determine the optimal biochar dosage to promote the best growth of chili pepper plants under drip and conventional irrigation systems, calculating plant water needs and watering scenarios. Conducted in Dusun Bawang, Tunggulwulung Village, Malang, the study collected soil samples from Sumbergondo Village, Bumiaji District, Batu City. The experimental design employed a nested structure with eight irrigation treatments (drip and conventional) and four biochar doses (0%, 2%, 4%, and 6% of soil weight, each polybag containing 6 kg of soil). Each treatment was repeated four times, consisting of five units for each treatment, resulting in 160 experimental units. The chili pepper variety Ori 212 was planted in polybags pre-treated with chicken manure as a base fertilizer. NPK pearl fertilizer was applied at half the recommended dose. This study concluded that applying biochar at an optimal dosage of 4% can significantly promote the growth of chili plants. Integrating biochar with drip irrigation systems has proven effective in enhancing growth, especially in loam soils. The average potential evapotranspiration rate was measured at 3.91 mm/day. A water surplus was recorded from the third week of October to April, while a water deficit was noted from May until the third week of October, highlighting the necessity for efficient irrigation management. The water needs of chili plants varied across their growth stages. In the early phase, the requirement was 173 ml/day, which increased to 341 ml/day during the growth phase, peaked at 606 ml/day during fruit formation, and decreased to 598 ml/day during maturation. This rise in water demand reflects the plants’ development.
Rocznik
Strony
66--82
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
autor
  • Agrotechnology Study Program, Faculty of Agriculture, Tribhuwana Tunggadewi University, Jl. Telaga Warna, Tlogomas, Lowokwaru District, Malang City, East Java, 65114, Indonesia
  • Department of Agricultural Economics, School of Graduate, Tribhuwana Tunggadewi University, Jl. Telaga Warna, Tlogomas, Lowokwaru District, Malang City, East Java, 65114, Indonesia
  • Department of Water Resources Engineering, Faculty of Engineering, Brawijaya University, Jl Veteran, Malang, Indonesia
  • Agrotechnology Study Program, Faculty of Agriculture, Tribhuwana Tunggadewi University, Jl. Telaga Warna, Tlogomas, Lowokwaru District, Malang City, East Java, 65114, Indonesia
  • Agrotechnology Study Program, Faculty of Agriculture, Tribhuwana Tunggadewi University, Jl. Telaga Warna, Tlogomas, Lowokwaru District, Malang City, East Java, 65114, Indonesia
Bibliografia
  • 1. Abd El-Mageed T.A., Abd El-Mageed S.A., El-Saadony M.T., Abdelaziz S., Abdou N.M. (2022). Plant growth-promoting rhizobacteria improve growth, morph-physiological responses, water productivity, and yield of rice plants under full and deficit drip irrigation. Rice, 15(16), 1–16. https://doi.org/10.1186/s12284-022-00564-6
  • 2. Alotaibi M. (2023). Climate change, its impact on crop production, challenges, and possible solutions. Notulae Botanicae Horti Agrobotanici Cluj- Napoca, 51(1), 13020. https://doi.org/10.15835/nbha51113020.
  • 3. An X., Liu Q., Pan F., Yao Y., Luo X., Chen C., Liu T., Zou L., Wang W., Wang J., and Liu X. (2023). Research advances in the impacts of biochar on the physicochemical properties and microbial communities of saline soils. Sustainability, 15(19), 14439.
  • 4. Ayars J.E., Phene C.J., Hutmacher R.B., Davis K.R., Schoneman R.A., Vail S.S., Mead R.M. (1999). Subsurface drip irrigation of row crops: a review of 15 years of research at the water management research laboratory. Agric Water Manag, 42(1), 1–27.
  • 5. Bao Z., Dai W., Su X., Liu Z., An Z., Sun Q., Jing H., Lin L., Chen Y. and Meng J. (2024). Long‐term biochar application promoted soil aggregate‐associated potassium availability and maize potassium uptake. GCB Bioenergy, 16(4), 13134.
  • 6. Bekchanova M., Campion L., Bruns S., Kuppens T., Lehmann J., Jozefczak M., Cuypers A., Malina R. (2024). Biochar improves the nutrient cycle in sandy-textured soils and increases crop yield: a systematic review. Environmental Evidence, 13(3), 1–34. https://doi.org/10.1186/s13750-024-00326-5
  • 7. Bhutia K.L., Khanna V..K., Meetei T.N.G, Bhutia N.D. (2018). Effects of climate change on growth and development of chilli. Agrotechnology, 7(180), 1–4. https://doi.org/10.4172/2168-9881.1000180
  • 8. Bruun, S., Harmer, S. L., Bekiaris, G., Christel, W., Zuin, L., Hu, Y., Jensen, L.S., Lombi, E. (2017). The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure. Chemosphere, 169, 377–386. https://doi.org/10.1016/j.chemosphere.2016.11.058
  • 9. Cabral N.S.S., Medeiros A.M., Neves L.G., Sudre C.P., Pimenta S., Coelho V.J. (2017). Genotype x environment interaction on experimental hybrids of chili pepper. Genet Mol Res, 16(2), 1–9. https://doi.org/10.4238/gmr16029551
  • 10. Cao H., Ning L., Xun M., Feng F., Li P., Yue S., Song J., Zhang W., Yang H. (2019). Biochar can increase nitrogen use efficiency of Malus hupehensis by modulating nitrate reduction of soil and root. Appl. Soil Ecol. 135, 25–32. https://doi.org/10.1016/j.apsoil.2018.11.002
  • 11. Cartika I., Murtiningsih R., Sembiring A., Sulastiningsih N.W.H., Moekasan T.K., Prabaningrum L., Setiawatii W. and Hasyim, A. (2023). Drip irrigation system: useful technique to improve chili production. In IOP Conference Series: Earth and Environmental Science, 1183(1), 012010. https://doi.org/10.1088/1755-1315/1183/1/012010
  • 12. Chen X.W., Wong J.T.F., Chen Z.T., Tang T.W.L., Guo H.W., Leung A.O.W., Charles W.W.N., Wong M.H. (2018). Effects of biochar on the ecological performance of a subtropical landfill. Sci Total Environ, 644, 963–975. https://doi.org/10.1016/j.scitotenv.2018.06.379
  • 13. Dalezios N.R, Gobin A., Tarquis Alfonso A., Eslamian S. (2017). Agricultural drought indices: combining crop, climate, and soil factors. Handb Drought Water Scarcity Princ Drought Water Scarcity.
  • 14. Doorenbos, J., Kassam, A.H. (1979). Yield response to water irrigation, FAO irrigation and drainage Paper 33. Rome (IT): Food and Agriculture Organization of the United Nations.
  • 15. Pham D.T., Nguyen H.N., Nguyen L.V., Tran O.V., Nguyen A.V., Dinh L.P.T., Vu N.V. (2021). Sandy soil reclamtation using biochar and clay-rich soil. Journal of Ecological Engineering, 22(6), 26–35. https://doi.org/10.12911/22998993/137445
  • 16. Erickson A.N., Markhart A.H. (2001). Flower production, fruit set, and physiology of bell pepper during elevated temperature and vapor pressure deficit. J Amer Soc Hort Sci, 126(6), 697–702. https://doi.org/10.21273/JASHS.126.6.697
  • 17. FAO. (2020). World Food and Agriculture - Statistical Yearbook 2020 [Internet]. Rome, Italy: FAO; 2020 [cited 2024 Mar 30]. 366. (FAO Statistical Yearbook – World Food and Agriculture). Available from: https://www.fao.org/documents/card/en/c/cb1329en
  • 18. Gao Y., Shao G., Yang Z., Zhang K., Lu J., Wang Z., Wu S., Xu D. (2021). Influences of soil and biochar properties and amount of biochar and fertilizer on the performance of biochar in improving plant photosynthetic rate: a meta-analysis. Eur J Agron, 130, 26345. https://doi.org/10.1016/j.eja.2021.126345
  • 19. Garruna-Hernandez R., Orellana R., Larque- Saavedra A., Canto A. (2014). Understanding the physiological responses of a tropical crop (capsicum chinense jacq.) at high temperature. PLoS ONE 9(11), e111402. https://doi.org/10.1371/journal.pone.0111402
  • 20. Ghorbani M., Asadi H., Abrishamkesh S. (2019). Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. Int Soil Water Conserv Res, 7, 258–65. https://doi.org/10.1016/j.iswcr.2019.05.005
  • 21. Goyal M.R. (2013). Management of drip/trickle or micro irrigation. Apple Academic Press. Canada, 1–10.
  • 22. Herath H.M.S.K., Arbestain M.C., and Hedley M. (2013). Effect of biochar on soil physical properties in two contrasting soils: An alfisol and an andisol. Geoderma, 209(210), 188–197. https://doi.org/ doi:10.1016/j.geoderma.2013.06.016
  • 23. Intergovernmental Panel on Climate Change (IPCC). 2022. Climate change and land: ipcc special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [internet]. Cambridge: Cambridge University Press. [cited 2024 Mar 30]. Available from: https://www.cambridge.org/core/books/climate-change-and-land/ AAB03E2F17650B1FDEA514E3F605A685
  • 24. Joseph S., Cowie A.L., Van Zwieten L., Bolan N., Budai A., Buss W., Lehmann J. (2021). How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, 13(11), 1731– 1764. https://doi.org/10.1111/gcbb.12885
  • 25. Khan M.A., Basir A., Adnan M., Fahad S., Ali J., Mussart M., Mian I.A., Ahmad M., Saleem H.M., Naseem W., El Sabagh A., Al-Tawaha A.M., Arif M., Amanullah, Saud S., Nawaz T., Badshah S., Hassan S., Munir I. (2023). Biochar to improve crops yield and quality under a changing climate. in sustainable agriculture reviews 61: biochar to improve crop production and decrease plant stress under a changing climate, 57–73. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-26983-7_2
  • 26. Konneh M., Wandera S.M., Murunga S.I., Raude J.M. (2021). Adsorption and desorption of nutrients from abattoir wastewater: modelling and comparison of rice, coconut, and coffee husk biochar. Heliyon, 7(11). https://doi.org/10.1016/J.heliyon.2021.E08458
  • 27. Lateef A., Nazir R., Jamil N., Alam S., Shah R., Khan M.N., Saleem M., Rehman S. (2019). Synthesis and characterization of environmental friendly corncob biochar based nano-composite–A potential slow release nano-fertilizer for sustainable agriculture. Environ Nanotechnol Monit Manage, 11, 100212. https://doi.org/10.1016/j.enmm.2019.100212
  • 28. Lepaja L., Lepaja K., Kullaj E., Balaj N. 2024. The influence of drip irrigation on water efficiency in pear cultivation. 2024. Journal of Ecological Engineering, 25(7), 241–245. https://doi.org/10.12911/2299893/188579.
  • 29. Liu Q., Yanhui Z., Liu B., Amonette J.E., Lin Z., Liu G., Ambus P., Xie Z. (2018). How does biochar influence soil N cycle? A meta-analysis. Plant and Soil, 426, 211–25. https://doi.org/10.1007/s11104-018-3619-4
  • 30. Liu D., Feng Z., Zhu H., Yu L., Yang K., Yu S., Zhang Y., Guo W. (2020). Effects of corn straw biochar application on soybean growth and alkaline soil properties. BioResources 15, 1463–1481.. https://doi.org/doi:10.15376/biores.15.1.1463-1481
  • 31. Liu L., Li J., Wu G., Shen H., Fu G., Wang Y. (2021). Combined effects of biochar and chicken manure on maize (Zea mays L.) growth, lead uptake and soil enzyme activities under lead stress. PeerJ, 9, 11754.
  • 32. Luo, Y., Durenkamp, M., Nobili, M.D., Lin, Q., Devonshire, B.J., and Brookes, P.C. (2013). Microbial biomass growth following incorporation of biochars produced at 350oC or 700oC, in a silty-clay loam soil of high and low pH. Soil Biol. biochem. 57, 513– 523. https://doi.org/10.1016/j.soilbio.2012.10.033
  • 33. Juriga, M., Šimanský, V., Horák, J., Kondrlová, E., Igaz, D., Polláková, N., Buchkina, N., Balashov, E. (2018). The effect of different rates of biochar and biochar in combination with n fertilizer on the parameters of soil organic matter and soil structure. Journal of Ecological Engineering. 19(6), 153–161. https://doi.org/10.12911/22998993/92894
  • 34. Wiesmeier, M., Hübner, R., Spörlein, P., Geuß, U., Hangen, E., Reischl, A., Schilling, B., von Lützow, M., Kögel-Knabner, I. (2013). Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation. Global. Change Biology. 20, 653–665. https://doi.org/10.1111/gcb.12384
  • 35. Mašek O., Buss W., Brownsort P., Rovere M., Tagliaferro A., Zhao L., Xu G. (2019). Potassium doping increases biochar carbon sequestration potential by 45%, facilitating decoupling of carbon sequestration from soil improvement. Sci Rep, 9(1), 1–8. https://doi.org/10.1038/s41598-019-41953-0
  • 36. Mustaffa M.R.A.F., Pandian K., Chitraputhirapillai S., Kuppusamy S., Dhanushkodi K. (2023). Synthesis of biochar-embedded slow-release nitrogen fertilizers: Mesocosm and field scale evaluation for nitrogen use efficiency, growth and rice yield. Soil Use Manage, 40(1), 1–17. https://doi.org/10.1111/sum.12959
  • 37. Oladele S., Adeyemo A., Adegaiye A., Awodun M. (2019). Effects of biochar amendment and nitrogen fertilization on soil microbial biomass pools in an Alfisol under rain-fed rice cultivation. Biochar, 1, 163– 76. https://doi.org/10.1007/s42773-019-00017-2
  • 38. Pandian K., Vijayakumar S., Mustaffa M.R.A.F., Subramanian P., Chitraputhirapillai S. (2024). Biochar – a sustainable soil conditioner for improving soil health, crop production and environment under changing climate: a review. Front. Soil Sci. 4, 1376159. https://doi.org/10.3389/fsoil.2024.1376159
  • 39. Pascale S.D., Costa L.D., Vallone S., Barbieri G., Maggio A. (2011). Increasing water use efficiency in vegetable crop production: from plant to irrigation systems efficiency. HortTechnology, 21(3), 301–8.
  • 40. Potkonjak Svetlana. 1995. The economy of drip irrigation. 20 Years of drip irrigation in Yugoslavia. Beograd, 207–212.
  • 41. Ren T., Fan P., Zuo W., Liao Z., Wang F., Wei Y., Cai X., Liu G. (2023). Biochar-based fertilizer under drip irrigation: More conducive to improving soil carbon pool and promoting nitrogen utilization. Ecological Indicators 154, 110583. https://doi.org/10.1016/j.ecolind.2023.110583
  • 42. Reyes F., Gosme M., Wolz K.J., Lecomte I., Dupraz C. (2021). Alley cropping mitigates the impacts of climate change on a wheat crop in a Mediterranean environment: a biophysical model-based assessment. Agriculture, 11(4), 356. https://doi.org/10.3390/agriculture11040356
  • 43. Ścisłowska M., Włodarczyk R., Kobyłecki R., Bis Z. (2015). Biochar to improve the quality and productivity of soils. Journal of Ecological Engineering, 16(3), 31–35. https://doi.org/10.12911/22998993/2802
  • 44. Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. 22, 1315–1324.
  • 45. Sokol J., Amrose S., Nangia V., Talozi S., Brownell E., Montanaro G., Khaled A.N., Mustafa K.B., Bahri A., Bouazzama B., Bouizgaren A., Mazahrih N., Moussadek R., Sikaoui L., Winter A.G. (2019). Energy reduction and uniformity of low-pressure online drip irrigation emitters in field tests. Water, 11(6), 1195.
  • 46. Umair M., Hussain T., Jiang H., Ahmad A., Yao J., Qi Y., Zhang Y., Min L., Shen, Y. (2019). Water-saving potential of subsurface drip irrigation for winter wheat. Sustainability, 11(10), 2978. https://doi.org/10.3390/su11102978
  • 47. Venot J.P, Kuper M, Zwarteveen M. (2017). drip irrigation for agriculture: untold stories of efficiency, innovation and development. Taylor & Francis, 386. https://doi.org/10.4324/9781315537146
  • 48. Šimanský V., and Klimaj A. (2017). How does biochar and biochar with nitrogen fertilization influence soil reaction? Journal of Ecological Engineering, 18(5), 50–54. https://doi.org/10.12911/22998993/74948
  • 49. Vu, K.T., Dinh Thi Lan, P., Nguyen, N.T.H., Thanh, H.N. (2022). Cadmium immobilization in the rice - paddy soil with biochar additive. Journal of Ecological Engineering, 23(4), 85–95. https://doi.org/10.12911/22998993/146331
  • 50. Wang Z., Zhang H., Wang Y., Zhou, C. (2021). Integrated evaluation of the water deficit irrigation scheme of indigowoad root under mulched drip irrigation in arid regions of Northwest China based on the improved TOPSIS method. Water, 13(11), 1532.
  • 51. Wilson C. and Bauer M. (2014). Drip irrigation for home gardens. Colorado State University. Fact sheet, 4, 702.
  • 52. Woznicki S.A., Nejadhashemi A.P., Parsinejad M. (2015). Climate change and irrigation demand: uncertainty and adaptation. Journal of Hydrology: Regional Studies 3, 247–264. http://dx.doi.org/10.1016/j.ejrh.2014.12.003
  • 53. Li X., Wu D., Liu X., Huang Y., Cai A., Xu H., Ran J., Xiao J., Zhang W. (2024). A global dataset of biochar application effects on crop yield, soil properties, and greenhouse gas emissions. Scientific Data, 11(57). https://doi.org/10.1038/s41597-023-02867-9
  • 54. Yadav M., Vashisht B.B., Jalota S.K., Kumar A., Kumar D. (2022). Sustainable water management practices for intensified agriculture. In: Dubey SK, Jha PK, Gupta PK, Nanda A, Gupta V, editors. Soil-water, agriculture, and climate change: exploring linkages [Internet]. Cham: Springer International Publishing. [cited 2024 Mar 30]. 131–61. https://doi.org/10.1007/978-3-031-12059-6_8
  • 55. Yanez-Lopez R., Torres-Pacheco I., Guevara- Gonzalez R.G., Hernandez-Zul MI., Quijano-Carranza J.A., Rico-Gracia E. (2012). The effect of climate change on plant diseases. African Journal of Biotechnology 11(10), 2417–2428. https://doi.org/10.5897/AJB10.2442
  • 56. Zheng, Y., Han X., Li Y,. Yang J., Li N., An N. (2019). Effects of biochar and straw application on the physicochemical and biological properties of paddy soils in northeast china. Scientific Reports 9, 16531. https://doi.org/10.1038/s41598-019-52978-w
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6bf0c831-cce0-47ee-be1a-ff843d34aa5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.