PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Reaction Time and Heat Treatment in the Production of Hydroxyapatite by Hydrothermal Synthesis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, Hydroxyapatite synthesis was carried out using hydrothermal method with calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) and fosfor pentaoksit (P2O5) as precursors. For the hydrothermal method, constant reaction temperature (180°C) and different reaction times (6 hours, 12 hours, 18 hours and 24 hours) were determined. The samples produced were divided into two groups. Four samples were not heat treatment; four samples were heat treatment at 700°C for 1 hour. The obtained products were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) techniques, X-ray diffraction (XRD) and UV-Vis spectrometer. SEM photos showed that the Hydroxyapatite powders produced are in the form of the agglomerate. According to EDS results, Hydroxyapatite samples are of high purity. XRD’s findings confirm that the diffraction peaks correspond to the pure phase of Hydroxyapatite. A general decrease was observed in the energy band gap of the samples with increasing hydrothermal reaction time.
Twórcy
autor
  • Fırat Unıversity, Faculty of Technology, Metallurgical and Materials Engineering Department, 23200, Elazığ, Turkiye
autor
  • Fırat Unıversity, Faculty of Technology, Metallurgical and Materials Engineering Department, 23200, Elazığ, Turkiye
  • Fırat Unıversity, Faculty of Technology, Metallurgical and Materials Engineering Department, 23200, Elazığ, Turkiye
  • Fırat Unıversity, Faculty of Technology, Metallurgical and Materials Engineering Department, 23200, Elazığ, Turkiye
Bibliografia
  • [1] C. Zhang, J. Yang, Z. Quan, P. Yang, C. Li, Z. Hou, J. Lin, Hydroxyapatite nano- and microcrystals with multiform morphologies: Controllable synthesis and luminescence properties, Cryst. Growth Des. 9 2725-2733 (2009). DOI: https://doi.org/10.1021/cg801353n
  • [2] M. Sadat-Shojai, M.T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomater. 9, 7591-7621 (2013). DOI: https://doi.org/10.1016/j.actbio.2013.04.012
  • [3] D.F. Fitriyana, R. Ismail, Y.I. Santosa, S. Nugroho, A.J. Hakim, M. Syahreza Al Mulqi, Hydroxyapatite Synthesis from Clam Shell Using Hydrothermal Method: A Review, 2019 Int. Biomed. Instrum. Technol. Conf. IBITeC. 7-11 (2019). DOI: https://doi.org/10.1109/IBITeC46597.2019.9091722
  • [4] R.H. Doremus, Review Bioceramics, J. Mater. Sci. 27 285-297 (1992). https://link.springer.com/content/pdf/10.1007%2FBF00543915.pdf
  • [5] V.P. Orlovskii, V.S. Komlev, S.M. Barinov, Hydroxyapatite and hydroxyapatite-based ceramics, Inorg. Mater. 38, 973-984 (2002). DOI: https://doi.org/10.1023/A:1020585800572
  • [6] M.P. Ferraz, F.J. Monteiro, C.M. Manuel, Hydroxyapatite nanoparticles: A review of preparation methodologies, J. Appl. Biomater. Biomech. 2, 74-80 (2004).
  • [7] J. Norton, K.R. Malik, J.A. Darr, I.U. Rehman, Recent developments in processing and surface modification of hydroxyapatite, Adv. Appl. Ceram. (2006). DOI: https://doi.org/10.1179/174367606X102278
  • [8] S.V. Dorozhkin, Nanosized and nanocrystalline calcium orthophosphates, Acta Biomater. (2010). DOI: https://doi.org/10.1016/j.actbio.2009.10.031
  • [9] H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomater. (2011). DOI: https://doi.org/10.1016/j.actbio.2011.03.019
  • [10] D. He, X. Zhang, P. Liu, X. Liu, X. Chen, F. Ma, W. Li, K. Zhang, H. Zhou, Effect of hydrothermal treatment temperature on the hydroxyapatite coatings deposited by electrochemical method, Surf. Coatings Technol. 406, 126656 (2021). DOI: https://doi.org/10.1016/j.surfcoat.2020.126656
  • [11] W.J. Shih, Y.F. Chen, M.C. Wang, M.H. Hon, Crystal growth and morphology of the nano-sized hydroxyapatite powders synthesized from CaHPO4·2H2O and CaCO3 by hydrolysis method, J. Cryst. Growth. 270, 211-218 (2004). DOI: https://doi.org/10.1016/j.jcrysgro.2004.06.023
  • [12] E.A. Syukkalova, A.V. Sadetskaya, N.D. Demidova, N.P. Bobrysheva, M.G. Osmolowsky, M.A. Voznesenskiy, O.M. Osmolovskaya, The effect of reaction medium and hydrothermal synthesis conditions on morphological parameters and thermal behavior of calcium phosphate nanoparticles, Ceram. Int. 47, 2809-2821 (2021). DOI: https://doi.org/10.1016/j.ceramint.2020.09.135
  • [13] S.L. Ortiz, J.H. Avila, M.P. Gutierrez, H. Gomez-Pozos, T.V.K. Karthik, V.R. Lugo, Hydrothermal synthesis and characterization of hydroxyapatite microstructures, 2017 14th Int. Conf. Electr. Eng. Comput. Sci. Autom. Control. CCE 2017. 0-3 (2017). DOI: https://doi.org/10.1109/ICEEE.2017.8108902
  • [14] X. Jin, J. Zhuang, Z. Zhang, H. Guo, J. Tan, Hydrothermal synthesis of hydroxyapatite nanorods in the presence of sodium citrate and its aqueous colloidal stability evaluation in neutral pH, J. Colloid Interface Sci. 443, 125-130 (2015). DOI: https://doi.org/10.1016/j.jcis.2014.12.010
  • [15] Y.P. Guo, Y.B. Yao, C.Q. Ning, Y.J. Guo, L.F. Chu, Fabrication of mesoporous carbonated hydroxyapatite microspheres by hydrothermal method, Mater. Lett. 65, 2205-2208 (2011). DOI: https://doi.org/10.1016/j.matlet.2011.04.057
  • [16] S.H. Daryan, J. Javadpour, A. Khavandi, M. Erfan, 1-6. Morphological evolution on the surface of hydrothermally synthesized hydroxyapatite microspheres in the presence of EDTMP, Ceram. Int. 44, 19743-19750 (2018). DOI: https://doi.org/10.1016/j.ceramint.2018.07.229
  • [17] N.W. Yan Zhu, Lingling Xu, Chenhui Liu, Caoning Zhang, Nucleation and growth of hydroxyapatite nanocrystals by hydrothermal method, AIP Adv. 8 (2018) 1-11. chrome-extension://dagcmkpagjlhakfdhnbomgmjdpkdklff/enhanced-reader.html?pdf=https%3A%2F%2Fbrxt.mendeley.com%2Fdocument%2Fcontent%2Fc262e4a5-e25d-3d72-83fb-ce56fc85deff (accessed January 21, 2021).
  • [18] C. García-Negrete, R. Goméz, L. Brun, M. Barrera, G. Arteaga, A. Beltrán, A. Fernández, Synthesis and size evolution of 1D hydroxyapatite crystals under surfactant-free hydrothermal conditions, J. Phys. Conf. Ser. 1386 (2019). DOI: https://doi.org/10.1088/1742-6596/1386/1/012076
  • [19] W. Kong, K. Zhao, C. Gao, P. Zhu, Synthesis and characterization of carbonated hydroxyapatite with layered structure, Mater. Lett. 255, 126552 (2019). DOI: https://doi.org/10.1016/j.matlet.2019.126552
  • [20] W. Liang, Y. Niu, S. Ge, S. Song, J. Su, Z. Luo, Effects of hydrothermal treatment on the properties of nanoapatite crystals, Int. J. Nanomedicine 7, 5151-5158 (2012). DOI: https://doi.org/10.2147/IJN.S34077
  • [21] G. Singh, S.S. Jolly, R.P. Singh, Investigation of surfactant role in synthesis of hydroxyapatite nanorods under microwave and hydrothermal conditions, Mater. Today Proc. 26, 2701-2710 (2019). DOI: https://doi.org/10.1016/j.matpr.2020.02.568
  • [22] R.P. Singh, G. Singh, H. Singh, Sub-micrometric mesoporous strontium substituted hydroxyapatite particles for sustained delivery of vancomycin drug, J. Aust. Ceram. Soc. 55, 405-414 (2019). DOI: https://doi.org/10.1007/s41779-018-0248-6
  • [23] K.J. Joshi, N.M. Shah, Study of Hydroxyapatite Nano-particles synthesized using sono-chemical supported hydrothermal method, Mater. Today Proc. 9-13 (2020). DOI: https://doi.org/10.1016/j.matpr.2020.09.587
  • [24] R. Zhu, R. Yu, J. Yao, D. Wang, J. Ke, Morphology control of hydroxyapatite through hydrothermal process, J. Alloys Compd. (2008). DOI: https://doi.org/10.1016/j.jallcom.2007.03.081
  • [25] X. Xiao, R. Liu, F. Liu, X. Zheng, D. Zhu, Effect of poly(sodium 4-styrene-sulfonate) on the crystal growth of hydroxyapatite prepared by hydrothermal method, Mater. Chem. Phys. (2010). DOI: https://doi.org/10.1016/j.matchemphys.2009.12.004
  • [26] H. El Boujaady, M. Mourabet, A. EL Rhilassi, M. Bennani-Ziatni, R. El Hamri, A. Taitai, Adsorption of a textile dye on synthesized calcium deficient hydroxyapatite (CDHAp): Kinetic and thermodynamic studies, J. Mater. Environ. Sci. 7, 4049-4063 (2016).
  • [27] F.Y. Rajhi, I.S. Yahia, H.Y. Zahran, M. Kilany, Synthesis, structural, optical, dielectric properties, gamma radiation attenuation, and antimicrobial activity of V-doped hydroxyapatite nanorods, Mater. Today Commun. 26, 101981 (2021). DOI: https://doi.org/10.1016/j.mtcomm.2020.101981
  • [28] L. An, W. Li, Y. Xu, D. Zeng, Y. Cheng, G. Wang, Controlled additive-free hydrothermal synthesis and characterization of uniform hydroxyapatite nanobelts, Ceram. Int. 42, 3104-3112 (2016). DOI: https://doi.org/10.1016/j.ceramint.2015.10.099
Uwagi
1. This study was supported by the Fırat University Scientific Research Projects Unit (Project No: TEKF.18.25).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6becf815-d808-4fc3-9ea3-f3e4946b6acb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.