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1. Introduction  

Dependability indices like reliability and related 
measures, as availability, maintainability, failure 
rate, mean times, etc.,  are very important in design, 
development and lifetime analysis of real systems.  
It is worth to point out that there is an assumption 
that during the calculation of the dependability 
contributors for technical objects that are under 
investigation, probabilities of transition between 
states or sojourn times’ probabilities are exponential. 
Many causes, for example, lack of information, small 
sample sizes, or inaccurate assessment of data may 
result in the model assumptions being violated. In 
some cases, when exponential distribution is 
assumed, there is also possibility to assess factors 
according to different distributions, like Weibull, 
Erlang, etc [11]. 
Probabilities of transition between states and 
availability belong to the fundamental characteristic 
of reliability. The discrete-time case can be obtained 
from the continuous one, by considering counting 
measure for discrete time points. However we 
consider that important is to make it separately for 
this case, since an increasing interest is observed in 
practice for the discrete case [1], [2], [7], [8], [10]. 
The discrete-time model, on one hand, is much 
simpler to handle numerically than the continuous-
time one. On the other hand, it can used to handle 

numerically continuous-time formulated problems. 
So for practical reliability problems it is better to 
work in discrete-time [6]. 
There are attempts to calculate factors with 
continuous-time in literature [4], however 
calculations are prepared using exponential functions 
distributions. In engineering practice it very 
important to obtain accurate results without using 
strong simplifications.  
The paper consists of discussions about the 
possibility and about the reason of carrying out these 
calculations, which is made by the application of  
simple models of the Markov and Semi-Markov 
processes, where there are attempts of use of 
continuous time in these calculations. Discussion is 
based on hypothetical exponential and non-
exponential sojourn times’ probabilities. Valuation of 
these methods is based on the comparison of 
availability and probabilities of transition values 
when using exponential and Weibull functions 
distributions. Previous experience presented in [11] 
gave a reason to estimate uncertainty of calculation 
method, when Weibull functions distributions and 
Semi-Markov solution and also continuous time are 
applied. This estimation is provided by example of 
very simple set, where there are two states of 
reliability. In sections 2 and 3 the hypothetical  
simple process is described by Markov and Semi-
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Markov rules. Section 3 consists of description of 
prepared samples. Next there are going to be shown 
calculations.  
 
2. Path’s assumption 
 
2.1. Markov approach 

Let’s make assumption that: 
)(1 tP - probability of sojourn time in up-state at the 

moment t; 
( )tP2 - probability of sojourn time in down-state at 

the moment t; 
( )tλ  - intensity of failures; 

( )tµ - intensity of repairs. 
Below there is the  matrix of intensities of transition 
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The matrix can be described by a graph as shown in 
Figure 1. State 1 is assumed as up-state, state 2 is 
down-state. 

 

Figure. 1.  Graph of state transition 
 

The transition probability matrix is obtained by  
solving the Chapman-Kolmogorov equations:  
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The stationary probabilities (the limiting 
probabilities) are given by well known formulas: 
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2.2. Semi-Markov approach  

There are three methods to define Semi – Markov 
processes [3], [4]: 
1. by pair (p, Q(t)), 

where: p – vector of initial distribution, Q(t) – matrix 
of distribution functions of transition times between 
states; 
2. by triplets (p, P, F(t)), 
where: p – vector of initial distribution, P – matrix of 
transition probabilities, F(t) – matrix of  distribution 
functions of sojourn times in state i-th, when j-th 
state is next; 
3. by triplets (p, e(t), G(t)), where: p – vector of 
initial distribution, e(t) – matrix of probabilities of 
transition between i-th and j-th states, when sojourn 
time in state i-th is x, G(t) – matrix of unconditional 
sojourn times distribution functions.  
The Markov process model that was included in this 
paper, in particular example of Semi-Markov is 
defined by (p, P, F(t)). 
Transition  probabilities are one of the most 
important characteristics of Semi – Markov 
processes, which  are defined as conditional 
probabilities 
                                                      
   { } SjiiXjtXPtPij ∈=== ,,)0(|)()(                 (5) 

 
These probabilities obey Feller’s equations  
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Solution of that set of equations can be found by 
applying the Laplace – Stieltjes transformation. After 
that transformation the set takes form 
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In matrix form 
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Hence 
 

   )](~[)](~[)(~ 1 sIsIs gqp −−= − .                             (9) 
 
3. Conditions determination for particular 
example 

Assumed system, presented on figure 1, consist of 
two states. Object can stay in reliability states from 
the set S (0,1), where: 
0 – unserviceability state, 
1 – serviceability state.  
First state is described by random variable ζp1. The 
distribution function of random variable is 
 
   { }tPtF pp ≤= 11 )( ζζ , 0≥t . 
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Normal activities can be interrupted by failures. If 
there is known time, when the system is broken 
down, and that time is given by χp, then the 
distribution function of state “repair” is 
 

   { }tPtF pp
≤= χχ )( , 0≥t . 

 
The process can be described by Semi – Markov 
process }0:)({ ≥ttX  with the finite set of states Sp 
= {1, 2}. The kernel of the process is described by 
matrix 
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Transition from 1-st state to 2-nd can be described  
By 
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Transition from 2-th state to 1-st: 
 

  )()()(01 tFtPtQ
ppp χχ =<= . 

The vector p = [p1, p2] is initial distribution of the 
process, in particular example p = [1,0]. 
 
4. Data and assumptions for calculations 

For the purposes of the particular example, there was 
prepared two states set-up, which was 
mathematically described in section 2.1. It was 
described by Markov process and Semi-Markov 
process. Prepared data includes information about 
sojourn times, during 100 points of time.  Initial 
value of sojourn time of serviceability is equal to 10, 
and after 100 observations this value decreases to 
value of 9.81. Each of following number is lower 
about 0.01. This set can describe the simple technical 
object, where the normal maintenance started before 
the earlier one, and last observation didn’t finish one. 
Sojourn time of unserviceability is constant and is 
also equal to 1.  
The data allow to asses main parameters 
characterizing sample according to exponential and 
Weibull functions distributions. 
In practice simplifications based on assuming 
exponential distribution often is like routine. 
Consequently values of availability or transient 
probabilities are calculated basing on Markov 
process, with usage of mean values of sojourn state 

times or states transitions. This method is described 
in section 4.1.  
Authors conducted calculation by assuming that the 
size of the sample and its character allow carrying 
out calculations basing on the mean values of 
sojourn time.  
Basically the way of calculation is identical to the 
case described in point 4.1, but the prepared random 
sample was divided into 10 sections. For each of 
them, there were calculated parameters, that are 
important for authors. 
In section 4.3 there is assumption, that transition 
from state 1 to state 2 is be described by Weibull 
function distribution, reverse transitions is 
exponential. In section 4.1 and 4.2 calculations are 
carried out with Markov procedures, in section 4.3 
Semi-Markov procedures is applied. Necessary 
factors to make calculations are presented in Table 1, 
a parameter is close to value of 1 (close to 
exponential parameters). 
 
Table 1. Distribution parameters for different 
distribution function 

state 1 state 2 
Parameter of exponential distribution (variant 1) 

λ=0.105 µ=1 
Weibull and exponential distributions (variant 3) 

α=0.105 
β=1.1 

µ=1 

 
4.1 Markov calculation with one mean value 

At first calculation has been done with assumption, 
that transient probabilities are exponential. Value of 
parameters is obtained from sample of 100. Mean 
time of sojourn time of state 1 is 9.52, intensity of 
transition between state 1 and 2 is 0.105, in reverse 
direction is constant and equal to 1. The distribution 
function of sojourn times and their Laplace – 
Stieltjes transformation take form: 
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Then, kernel of the process is given by matrix 
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Matrices )(~ sq  and )(~ sg  have been determined 
according to equations (7) – (9). In considered 
example we obtain 
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However, taking into account recent experience  
calculations will be carried out with Markov model 
with time going to infinity [9], [11]. In this case 
intensities of transition given for particular example 
are presented in Table 2. 
Values P01 and P10 very quickly take stable values. 
In case of P10 it’s after t=8. In particular example 
when sojourn time of state 1 decreases transient 
probability of transition to state 2 increases also. 
 
Table 2. Intensities of transition in intervals 

t P00 P01 P10 P11 

1 0.901 0.099 0.631 0.369 

2 0.811 0.189 0.864 0.136 

3 0.730 0.270 0.950 0.050 

4 0.658 0.342 0.981 0.019 

5 0.592 0.408 0.993 0.007 

6 0.534 0.466 0.997 0.003 

7 0.480 0.520 0.999 0.001 

8 0.433 0.567 1 0 

9 0.390 0.610 1 0 

10 0.351 0.649 1 0 

20 0.123 0.877 1 0 

30 0.043 0.957 1 0 

40 0.015 0.985 1 0 

50 0.005 0.995 1 0 

 
4.2. Example with exponential distributions 
and constant intensities in intervals 

Taking into account prepared data authors assumed 
that value of intensity of transition will be calculated 
for each 10 samples. Having 100 observations it 
gives 10 intervals with variable mean values sojourn 
time of state 1st. In this case calculation procedures 
are the same like in previous variant. Introducing 
variable mean values prescribed to intervals, 
uncertainty of evaluation is expected to be smaller. 
Values of intensities of transition in intervals are 
presented in Table 3.  
According to Markov calculation rules it is possible 
to obtain results presented in table 4. Parameter P0 
can be treating as value of availability. There is also 
value of availability obtain in recent calculations. 

Parameter assigned by “*” represent availability 
results for previous example.  
 
Table. 3. Results of states probabilities 

t λ µ P0 P1 P* 
0 0.1000 0.9091 0.0909 
10 0.1005 0.9087 0.0913 
20 0.1015 0.9079 0.0921 
30 0.1025 0.9070 0.0930 
40 0.1035 0.9062 0.0938 
50 0.1046 0.9053 0.0947 
60 0.1056 0.9045 0.0955 
70 0.1067 0.9036 0.0964 
80 0.1077 0.9027 0.0973 
90 0.1088 0.9019 0.0981 
100 0.1099 

1 

0.9010 0.0990 

0.9050 

 
 

 
Figure 2. Comparison of values of availability 
obtained by Markov methods 
 
On Figure 2 representing results of comparison of 
two simple methods. It can be seen, that lowering 
number of intensities of transition causes degreasing 
value of transient probabilities and availability as 
time increasing. Calculating values of availability by 
first method can be treating as first estimation. 
Second way of calculating gives more detailed 
information.  
Compared values of transient probabilities P01 , that 
were obtained by the application of two methods of 
calculating, did not result in serious differences. 
Sensitivity analysis did not give the clear answer, 
where question is which method gives certain values. 
 
4.3. Example with Weibull distributions and 
Semi-Markov calculations 

In third variant of calculation there was decided, that 
the sojourn time of state 1 is given by Weibull 
function distribution, and for state 2 it is exponential. 
According to table 2, collected data can be described 
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by Weibull distributions. For particular calculations 
sojourn times distribution functions take form: 
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Derivative of Weibull distribution function (i.e. 
density function) is presented by 
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Laplace – Stieltjes transformations of Weibull 
distribution function can be obtained by using 
formula 
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Using Maclaurin series for element “
αλte− ”, we 

obtain Laplace – Stieltjes transformation of the 
Weibull distribution function 
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For considered example, Weibull distribution 
Laplace – Stieltjes transformations take form, 
respectively 
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Matrices )(~ sq  and )(~ sg  have been determined 
according to equations (5) – (7). In considered 
example obtain 
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State probability can be obtained form formula: 
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Figure 3. presents graphs of state probabilities. 
 

 
Figure 3. State probabilities graph with exponential 
and Weiubull functions.  
 
Both functions distributions are non monotonic. 
Going to infinity they obtain constant values of 

21, PP , calculated basing on Laplace transformation  
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or  calculated on the basis of ergodic theory for 
Semi-Markov processes. In particular example: 
 
   =1P 0.9066,        0934.02 =P  
 
5. Conclusion 

Semi - Markov processes allow for estimating crucial 
indices like availability or transition probabilities for 
systems, where the  distributions functions are 
specified.  
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This article does not contain a straightforward 
answer, if the way of calculation and obtained results 
are correct. Parameters of these sets were matched in 
a way, to make it impossible to compare values of 
probabilities of transfer between states. On purpose 
there were not introduced any other states, because it 
could make the image disturbed and what is more it 
could lead to the illegibility of obtained result. 
Obtained results show that the method of cutting off 
elements of Maclaurin's series is providing good 
quality results in the second attempt. 
In case of Semi-Markov processes, usage of 
distribution function that is different from the 
exponential one, makes further calculations very 
complicated. However it is possible to obtain some 
results. Because of difficulties in calculation, profits 
from usage of Semi-Markov processes are limited.  
However simple models can be computed. The main 
goal of future work is the continuation of research 
which are connected with the applicability of Semi-
Markov computation, where the distribution differs 
from exponential function. The improvement of 
analytical results gives the chance of preparation an 
accurate software simulator in the future, that 
simplifies calculation and decreases the level of 
uncertainties.    
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