PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

From Euclid's elements to cosserat continua

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The classical continuum theory is based on the assumption that each small particle behaves like a simple material point and ignores the relative motions of constituent parts of this particle. The development of the notion of a point and the development of non-Eeuclidean geometry is considered. The Cosserat continuum is an example of medium with microstructure, in which "a ponit" has an internal structure. Its motion is determined by the displacement and rotation fields.
Twórcy
autor
  • Institute of Mathematics and Computer Science Jan Długosz University of Częstochowa, al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
Bibliografia
  • [1] Y. Ne'eman, Geometrization of spontaneously broken symmetries. Theoretical and Mathematical Physics, 139, No. 3, 745-750, 2004.
  • [2] Y. Ne'eman. Plato alleges that God forever geometrizes. Foundations of Physics, 26, No. 5, 575-583, 1990.
  • [3] L.I. Sedov, A.G. Tsypkin. Fundamentals of Mactoscopic Theories of Gravitation and Electromagnetism. Nauka, Moscow 1989. (In Russian).
  • [4] S.A. Lisina, A.I. Potapov. Generalized continuum models in nanomechanics. Doklady Physics, 53, 275-277, 2008.
  • [5] R.D. Mindlin. Microstructure in linear elasticity. Arch. Rational Mech. And., 16, 51-78, 1964.
  • [6] A.C. Eringen, E.S. Suhubi. Nonlinear theory of simple microelastic solids. Int. J. Engng. Sci., 2, 189-204, 389-404, 1964.
  • [7] R.A. Toupin. Theories of elasticity with couple-stresses, Arch. Ration. Mech. Anal, 17, 85-112, 1964.
  • [8] A.E. Green, R.S. Rivlin. Multipolar continuum mechanics. Arch. Ration. Mech. Anal, 17, 113-147, 1964.
  • [9] S.-D. Poisson. Memoire sur l'equilibre et le mouvement des corps cristallisees. Mém. Acad. Sci. Paris 18, 1842.
  • [10] A.E.H. Love. A Treatise on the, Mathematical Theory of Elasticity. Fourth Edition, Cambridge University Press, Cambridge 1927.
  • [11] W. Voigt. Theoretische Studien über die Elasticitätaverhältnisse der Krystalle. Abh. Ges. Wiss. Gottingen, 34, 100 pp., 1887.
  • [12] P. Trovalusci, G. Augusti. A continuum theory with microstructure for materials with flaws and inclusions. ,7. Phys. IV France, 8, Pr8-383 Pr8-390, 1998.
  • [13] A.C. Eringen. Microcontinuum Field Theories. L Foundations and Solids. Springer, New York 1999.
  • [14] A.C. Eringen. Microcontinuum Field Theories. II. Fluid Media. Springer, New York 2002.
  • [15] P. Duheni. Le potentiel thermodynamique et la pression hydrostatique. Ann. Ecole Norm. (3), 10, 187-230, 1893.
  • [16] A.E. Green, R.S. Rivlin. Simple force and stress nmltipoles. Arch. Ration. Mech. Anal, 16, 325-353, 1964.
  • [17] J.L. Ericksen. Kinematics of macromolecules. Arch. Ration. Mech. Anal, 9, 1-8, 1962.
  • [18] J.L. Ericksen. Hydrostatic theory of liquid crystals, Arch. Ration. Mech. Anal., 9, 379-394, 1962.
  • [19] http://en.wikipedia.org/wiki/Liquid_crystal
  • [20] E. Cosserat, F. Cosserat. Théorie des corps deformables. Hermann, Paris 1909.
  • [21] C. Truesdell, W. Noll. The. Non-Linear Field Theories of Mechanics. Handbuch der Physik, III/3. Springer. Berlin 1965.
  • [22] E. Kröner (Ed.) Mechanics of Generalized Continua. Proceedings of the lUTAM-Symposium on the Genaralized Cosserat Continuum and the Continuum Theory of Dislocations with Applications. Freudenstadt and Stuttgart, 1967. Springer, Heidelberg 1968.
  • [23] M. Onami (Ed.) Introduction to Micromechanics. Metallurgia. Moscow 1987. (Russion tranalation from Japanese edition, 1980).
  • [24] H.-B. Mühlhaus (Ed.) Continuum Models from Materials with Microstructure. John Wiley and Sony. New York 1985.
  • [25] Y.S. Podstrigach, Y.Z. Povstenko. Introduction to Mechanics of Surface. Phenomena. in Deformable Solids. Naukova Dumka, Kiev 1985. (In Russian).
  • [26] G. Capriz. Continua with Microstructure. Springer, New York 1989.
  • [27] A. Bertram, S. Forest, F. Sidoroff (Eds.). Mechanics of Muterials with Intrinsic Length Scale.: Physica, Experiments, Modelling and Applications. Otto-von-Guericke-Universität Magdeburg 1998.
  • [28] C. Sansour. A unified concept of elastic-viscoplastic Cosserat and micromorphic continua. J. Phys. IV France, 8, Pr8-341-Pr8-348, 1998.
  • [29] M. Oda, K. Iwashita (Eds.) Mechanics of Granular Materials. An Introduction. Balkema, Rotterdam 1999.
  • [30] M.B. Rubin. Cosserat Theories: Shells. Rods and Points (Solid Mechanics and Its Applications). Springer, New York 2000.
  • [31] http://www-groups.dcs.st-and.ac.uk/history/HistTopics/Non-Euclidean_geometry.html
  • [32] E.B. Golos. Foundations of Euclidean and Non-Euclidean Geometry. Holt, Rinehart and Winston, New York 1968.
  • [33] M. Kline. Mathematical. Thought from Ancient to Modern Times. Oxford University Press, Oxford 1972.
  • [34] M.J. Greenberg. Euclidean and Non-Euclidean Geometries. Development and History. W.H. Freeman, San Francisco 1974.
  • [35] M. Kordos, L. Włodarski. O geometrii dla postronnych. PWN, Warszawa 1981.
  • [36] B.A. Rosenfeld. A History of Non-Euclidean geometry. Evolution of the Concept of a Geometrical Space. Springer, New York 1988.
  • [37] P. Rys, T. Zdráhal. Cabri geometry in the Poincare's model of a Lobachevskian geometry. In: Proc. XI Slovak-Czech-Polish Mathematical School, Ružomberok, June 2-5, 2004. pp. 168-169.
  • [38] P. Rys, T. Zdráhal. Cabri geometry in the Beltrami-Klein's model of a Lobachevskian geometry. In: Proc. XII Czech-Polish-Slovak Mathematical School, Hluboš, June 2-4, 2005, pp.193-195.
  • [39] K. Kondo (Ed.). RAAG Memoirs of the Unifying Study of Basic Problems in Engineering and Physical Sciences by Means of Geometry, Gakujutsu Bunken Fukyukai, Tokyo, vol. 1, 1955; vol. II, 1958, vol. III, 1962, vol. IV, 1968.
  • [40] M. Zorawski.Théorie mathematiqe des dislocations, Paris, Dunod 1967.
  • [41] J.A. Simmons, R. De Wit, R. Bullough (Eds.). Fundamental, Aspects of Dislocation Theory, U.S. National Bureau of Standards, Washington 1970.
  • [42] Y.Z. Povstenko. Connection between non-metric: differential geometry and mathematical theory of imperfections. Int. J. Engng Sci. 29, 37-46, 1991.
  • [43] C. Nas, S. Sen. Topology and Geometry for Physicists. Academic Press, London 1983.
  • [44] C. Von Westenholz. Differential Forms in Mathematical Physics. North-Holland Publ., Amsterdam 1978.
  • [45] A. Kadic, D.G.B. Edelen. A Gauge Theory of Dislocations and Disclination. Lecture Notes in Physics, vol. 174, Springer, Berlin 1983.
  • [46| D.G.B. Edelen, D.C. Lagondas. Gauge Theory and Defects in Solids. North-Holland, Amsterdam 1988.
  • [47) H. Kleinert. Gauge, Fields in Condenced Mutter. Vol II: Stresses and Defects, World Scientific, Singapore 1989.
  • [48] M.O. Katanaev. Geometric theory of defects. Physics Uspekhi, 48. 675-701, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6be5e9c7-4039-4164-bbf5-b4a2059ca67a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.