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Abstract

In adjusted geodetic networks, cases of local configuration defects (defects in the geometric structure of the network due tomissing data or errors in point numbering) can be encountered, which lead to the singularity of the normal equation system in theleast-squares procedure. Numbering errors in observation sets cause the computer program to define the network geometryincorrectly. Another cause of a defect may be accidental omission of certain data records, causing local indeterminacy or loweringof local reliability rates in a network. Obviously, the problem of a configuration defect may be easily detectable in networks with asmall number of points. However, it becomes a real problem in large networks, where manual checking of all data becomes a veryexpensive task. The paper presents a new strategy for the detection of configuration defects with the use of the Tikhonovregularization method. The method was implemented in 1992 in the GEONET system (www.geonet.net.pl).
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1 Problem of defects in geodetic network

The numerical elaboration of a geodetic network usually consistsof two stages. At first, the initial diagnostics of data is performed,which allows detection and removal of various types of observa-tional errors and geometric defects. Secondly, the final elaborationof the network is performed, including adjustment of observationsand calculation of the coordinates of points. Defects in a geodeticnetwork, that is, situations requiring identification and elimination,can be divided into several types, as shown in Figure 1.A metric defect in observations (outliers) means that the abso-lute value of the observational correction (error estimator) exceedsa certain threshold level (depending on the adopted probabilisticmodel and the significance level). Statistical methods are used toidentify such errors, but the correct result depends on the network’slocal reliability (local redundance) (Baarda, 1968; Prószyński andKwaśniak, 2019). The reliability of a geodetic network is relatedto the conditioning of the normal matrix in the problem of adjust-

ment of the geodetic network using the least-squares method. Ingeneral, the point here is that in ill-conditioned systems, detectionof a possible metric defect (outlier) can be difficult or impossible.The difficulty in identifying outliers is also due to the principle ofleast squares because this method causes some kind of ‘spilling’ oferrors over the network elements located in a specific vicinity ofthe outlier observation. In addition, the identification task becomesmore difficult as the size of the observational system increases.Therefore, other rules for observation adjustment are formulated,and the so-called robust estimation, in contrast to the averagingfeature of the least-squares method, causes some differences be-tween observations. These replace the least squares function by anobjective function with spline components (Hampel (1971); Huber(1964) and many others’ proposals) or based on regular, but non-square components of the objective function (Holland and Welsch,1977; Kadaj, 1978, 1988). A comprehensive review of the robustestimation methods can be found in the book by Wiśniewski (2013).The outlier phenomena may be related to the coordinates of the
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Figure 1. Defects in geodetic network: outliers and geometric (datum orconfiguration) defects.

tie points. A straightforward method of detecting such errors waspresented by Prof. Hausbrandt (Hausbrandt, 1954; Janusz, 1958). Itassumes that the coordinate reference points are treated as pseudo-observations with specific mean errors, estimated on the basis ofinformation on the accuracy of the determination of points in thenetwork of the appropriate class. The magnitude of the correctionto such pseudo-observation indicates a possible existence of anoutlier. The principles of robust estimations can also be used forthe same purpose, although the Hausbrandt method seems to besufficiently effective.This article is not a complete dissertation on the above subject.We will focus mainly on the problem of detecting configurationdefects, which – as shown by practical experience – are a verycommon phenomenon and difficult to identify, especially in largedata sets.The geometric (topology) defect (u = uref + uobs) can be clas-sified into two types, namely datum defect (missing of referenceelements) and configuration defects (network observational struc-ture defects). The first type implies that a certain number uref ofelementary data is missing to determine the position of the object(network) in the coordinate system. It may be a situation intendedto perform the so-called free network adjustment (Mittermayer,1972) and may also be the result of an unintentional mistake. Aconfiguration defect means the lack of a certain amount (uobs) ofobservations for network determination. The reason may not onlybe the omission of certain observations, but also numbering errorsof points in measurement plans. While the reference defect is easilyidentifiable, as it is a matter of several parameters, the configu-ration defect is usually difficult to spot, especially in the case ofgeodetic networks of considerable size in terms of the number ofpoints and observations. The main topic of this publication is theability to identify network configuration defects automatically.

2 The functional and stochastic model of a
geodetic network

The functional model of a geodetic network can be presented in theform of a vector equation (col = single-column matrix):
L + V = F(X), (1)

where:
L = col[Li : i = 1, 2, . . . , m] is an observational vector, with somecovariance matrix C,
P = C–1 is the weight matrix,
V = col[Vi : i = 1, 2, . . . , m] is a vector of unknown corrections,
X = col[Xj : j = 1, 2, . . . , n] is a vector of unknown parameters(point coordinates),
F(X) = col[Fi(X) : i = 1, 2, . . . , m] is a vector function of thevector X.

Let X0 denote the vector of approximate coordinates – the ap-proximation of the vector X. The linearized Equation (1) has theform:
v = A · x – l, (2)

where:
A = (dF/dX)(0) = [aij](m×n); (m ≥ n); aij = (dFi/dXj)(0)
x = X – X0; l = L – F(X0)
v = vector of observational corrections in the linearized system(2).
The least-squares solution for Equation (2) is the minimizationof the function:

Φ(x) = vT · P · v = (A · x–l)T · P · (A · x – l). (3)
From the necessary condition for the extreme, we get the normalequation:

AT · P · A · x = AT · P · l or B · x = w, (4)
where:

B = AT · P · A : is the (n × n) symmetric matrix,
rank(B) = n – u, u ≥ 0,

w = AT · P · l : is the (n × 1) vector.
(5)

If u = uref + uobs > 0, then the normal equation is singular,generating a linear subspace of solutions. In particular, if uref > 0(datum defect) and the value of the defect is known, while uobs = 0,then it is possible to apply ‘free adjustment’ (e.g. Mittermayer(1972)) using the so-called pseudo-inversion (generalized Moore–Penrose inversion; see more details in Bjerhammar (1973); Moore(1920); Penrose (1955)). An important feature of such a situation isthat the size of the defect is usually known in advance. A completelydifferent case occurs when a defect is unknown, both in terms of itsvalue and its situational location in the network. We only know thatit exists because the matrix of the system of equations is singular.Detection and localization of such a defect are the main issues ofthis work.

3 Least-squares adjustment in case if a defect
is known

In the case of a non-zero and known defect, an unequivocal solu-tion of the normal equation (4) may take place after applying anadditional condition (conditions) to the vector of unknowns x. Theuniversal condition in applications has the following form:
xT · x = min. (6)

Then the unequivocal solution is written in matrix notationusing the so-called generalized inversion (pseudo-inversion orMoore–Penrose inversion; see Moore (1920); Penrose (1955)):
x = B† ·w. (7)

The B† pseudo-inversion, where the solution (7) satisfies thecondition (6), is defined as follows (Deutsch, 1965). LetM, N bematrices of the size (r × n) and rank(M) = rank(N) = r and satisfythe condition B = MT · N. Then
B† = NT · (N · NT)–1 · (M ·MT)–1 ·M. (8)
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Figure 2. Structure of the Rmatrix (0 – elements assumed to be zero, X– other elements of the matrix), r – rank of the normal matrix
B, u = n–r = defect of the normal matrix.

In particular, if we assumeM = N = R thenM = RT·R and
B† = RT · (R · RT)–1 · (R · RT)–1 · R. (9)

The above condition is fulfilled by the Rmatrix resulting fromthe Cholesky–Banachiewicz factorization of the Bmatrix. It has a‘trapezoidal’ form (Figure 2).Note that in the case of zero defect (u = 0) B† = B–1, thenformula (9) takes the form:
B† = RT · (RT)–1 · R–1 · (RT)–1 · R–1 · R =

= I · R–1 · (RT)–1 · I = (RT · R)–1 = B–1. (10)

Another way of determining pseudo-inversion is the spectraldecomposition of the normal matrix. This matrix is symmetricand non-negative definite, so the spectral decomposition takes theform:
B = S·Λ·ST ; Λ = diag(λ1,λ2, . . . ,λr, 01, 02, . . . , 0u), (11)

where
01 = 02 = . . . = 0u = 0,
S = matrix of eigenvectors as an orthonormal matrix: ST · S = I,
Λ = diagonal matrix of eigenvalues: λ1 ≥ λ2 ≥ . . . ≥ λr > 0,

then
B† = ST·Λ†·S; Λ† = diag(λ–11 ,λ–12 , . . . ,λ–1

r , 01, 02, . . . , 0u). (12)
Thus, using formula (8) or (9), we can adjust the network if thedefect value is known. Typically, this situation is related to thedatum defect and is intentional in the aspect of the so-called freenetwork adjustment, consisting in the optimal fit of the networkinto a figure defined by approximate coordinates with simultane-ous adjustment of the observations (Mittermayer, 1972). However,a troublesome problem may be if a non-zero defect of a network isunknown and is a result of mistakes in the network adjustment pro-cess. This will be mainly a network configuration defect (uobs > 0);however, missing observational data or errors in point numberingmay also result in missing reference elements, that is, datum de-fect. Usually, such a situation is of an error nature, for example, asa result of accidental omission of certain observations in the datasets, necessary to obtain the effect of network determination, or asa result of errors of point identifiers in the observation plans of thegeodetic network.Similar to gross observation error, a network configuration de-fect will not be generally easy to identify and locate, especially inlarge networks with a variety of observation data. For this purpose,procedures using the exact pseudo-inversion formula (8) or (9) willnot be (in principle) effective. First of all, they require knowledgeof the defect value itself, not to mention its location in the network.Is it possible, then, to resolve the above issues in an ‘automatic’

manner?The problem of detecting and locating configuration defectscan be solved using the Tikhonov regularization method. Thismethod was formulated to solve singular, linear algebraic equa-tions (Tikhonov, 1963, 1965). It should be mentioned here that theproblem of regularization also refers to the original works: Lev-enberg (1944); Marquardt (1963, 1970); Phillips (1962). Phillips’work formulated the problem of regularization when solving inte-gral equations. The work of Levenberg and the first of Marquardt’sworks concerned the iterative solution of the systems of non-linearequations as a method optimising the convergence of the iterativeprocess. Another work by Marquardt (1970) already referred to theproblems of regularization in the iterative process.

4 Tikhonov procedure as alternative to general-
ized inversion and as a method for detecting
configuration defects

4.1 General formula for Tikhonov regularization

Tikhonov regularization (Tikhonov, 1963, 1965) is based on thecondition:
vT ·P·v + α·xT ·x = min (13)

from where:
(B + αI) · xα = w⇒ xα = (B + αI)–1 ·w = B–1

α ·w,
Bα = B + αI; I = unit matrix, (14)

where α > 0 is a ‘small’ number on which the difference betweensolutions (14) and (7) depends.If α decreases to zero, then solution (14) approaches (7) (Bjer-hammar, 1973):
lim
α→0B–1

α ·w = B† ·w (15)
but the B–1

α matrix is not, however, an appropriate approximationof the B† pseudo-inversion. This approximation is the matrix
Qα = B–1

α ·B ·B–1
α = B–1

α · (I –α ·B–1
α ) = B–1

α –α · (B–1
α )2 ≈ B† (16)

based on a theorem, compatible with (15):
lim
α→0Qα = B† = Q (17)

(matrix B and vectorw are expressed by the formulas (4) and (5)).The Q and Qα matrices are also theoretical covariance matricesof the estimated parameters (coordinates of the network points),respectively, for the exact and approximate (regularized) solution ofthe system, assuming that the standard deviation of the observationwith a unit weight s0 = 1.
4.2 Influence of the regularization parameter on results

of Equation (13)

By subtracting the normal equation (4) (least squares) from thenormal equation (14) (least squares with Tikhonov regularization),we will estimate the size of the difference between the solutionsusing the relative error (η):
B(xα – x) + α · xα = 0 or B · ∆x = –α · xα (18)

∆x = –α · B† · xα (19)
η = ∥∆x∥E / ∥xα∥E ≤ α∥B†∥S = α · ∥Q∥S = α · λ–1

r , (20)
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where: ∥.∥E is the vector Euclidean norm (associated with the spec-tral norm ∥.∥S of the matrix) and λr is the smallest non-zero eigen-value of the matrix B. Then, λ–1
r is the largest eigenvalue of thematrix Q = B†. We can see that the relative error depends signifi-cantly on the value of the regularization parameter in relation tothe smallest, non-zero eigenvalue. In the literature, e.g. Bell andRoberts (1973), we also find the estimate of η ≤ α(λr +α)–1, which,including the condition α ≪ λr, should not differ significantlyfrom (20). In any case, however, the estimate using the eigenvalue

λr is practically not verifiable unless we know the spectral decom-position of the matrix B. Such an operation is not necessary as it istoo expensive. The value of λ–1
r can be estimated with some excess,assuming an average value of the expected maximum error of themean coordinate of the network point. Let us denote it as µx. Fromthe trace Tr properties of the matrix, we have:

λ–1
r ≤

∑
i=1,...,r

(λ–1
i ) = Tr(Q) ≤ n · µ2

x . (21)

We will now return to (20) using the last estimate:
η ≤ α · n · µ2

x . (22)
If the relative error was to be smaller than ηmax, the parameter

α should be taken as
α < ηmax · (n · µ2

x )–1 = αmax. (23)
For example, let ηmax = 0.01, µx = 0.01 m, n = 1000 (number ofunknowns), then α < 0.001.The parameter α should also be limited from the bottom dueto the rounding error in a digital machine (Wilkinson, 1994). Foradding α to the diagonal element of the matrix B to be a significantoperation, its value should exceed the rounding error level of thediagonal elements of the matrix. Taking into account (23), we willget a selection range (Kadaj, 1979):

α ∈
(

max{bii} · 2–t,αmax
) , (24)

where bii is the diagonal element of the matrixB and t is the numberof significant binary digits in the floating-point notation of a realnumber.An estimation of the relative error of the Tikhonov regulariza-tion method concerns the case of a one-time solution according toformula (14) or, otherwise, formula (13) in relation to formulas (4)and (6). In practice, regularization is used in iterative processesthat correct a one-time solution (e.g. Bakushinskii (1992); Bell andRoberts (1973); George (2010); Hanke and Groetsch (1998); Mar-quardt (1963); Mehsner (2013); Scherzer (1993)). In particular, thisapplies to non-linear least-squares tasks using the Gauss–Newtoniterative procedure, and thus to the adjustment of geodetic net-works also.Regardless of whether the solution (14) is used once or is refinedin the iterative process, the covariance matrix of the unknownvector determined by formula (13) is approximate. The assess-ment of the relative error of this matrix in terms of the relativeincrease of the spectral norm leads to a restriction on the parameter
α analogous to (24), but with a ‘sharper’ upper limit (Kadaj, 1979):
αmax = ( 12 )· ηmax · (n · µ2

x )–1.Using Tikhonov’s regularization, is it possible detect and locatea configuration defect in a geodetic network? The covariance matrix
Qα expressed by formula (16) and the pseudo-inversion B† do notcontain information that would allow for the identification andlocation of the defect. Such information is provided by the B–1

αmatrix. Using the spectral decompositions, traces of these matrices

will be compared:
Tr(B†) = λ–11 + . . . + λ–1

r + 0 + 0 + . . . + 0 = C1 + 0 (25)
Tr(Qα) = λ1(λ1 + α)–2 + . . . + λr · (λr + α)–2 + 0+

+ 0 + . . . + 0 = C2 + 0 (26)
Tr(B–1

α ) = (λ1 + α)–1 + . . . + (λr + α)–1 + α–1+
+ α–1 + . . . α–1 = C3 + u · α–1 (27)

where u is the network defect. Since α is a small number in rela-tion to λr, the approximate equality holds C1 ≈ C2 ≈ C3 and thedominant big value component u · α–1 appears only in the trace ofthe matrix B–1
α . It is located in the diagonal elements of the matrixinverse to Bα, or more precisely in the elements corresponding tothe coordinates of undetermined points. The configuration defectis then identified in large values of the mean errors a posteriori ofthe respective coordinates (the diagonal elements of the B–1

α matrixare squares of mean errors). The next section focuses particularlyon the choice of parameter for this purpose.
4.3 Selecting the parameter α for detection and location

of a configuration defect

Let the regularization parameter α be interpreted as α = 1/µ2
c ,where µc denotes a priori expected mean coordinate errors for theunknown parameters (point coordinates). In a probabilistic andstatistical sense, it would also mean applying the idea of Bayesianestimation. Contrary to the commonly used Gauss–Markov modelfor observation adjustment, Bayesian estimation additionally usesa priori information (stochastic model) for the unknown param-eters. In our case, on the one hand, it will free the task from thedefect and singularity of the normal matrix, while on the otherhand, it will allow to identify missing observations or those givenwith erroneous point numbering. In the general model of Bayesianestimation (e.g. Bossler (1972)), instead of the scalar matrix α · Iused here, a full CX covariance matrix may appear as additional apriori information about the determined unknowns.Suppose the matrix of a system of normal equations B(n x n) issingular due to a network defect, rank(B) = r < n. Assume, forexample, the coordinates of all points determined in the network

µx = µy = µ c = 100 m, that is, with the weight α = 0.0001 donot significantly affect the results of the network adjustment, wemake the non-singular system of normal equations (the networkbecomes determinable, and the normal matrix becomesBα = B+αIand is significantly positively defined with the order r = n). Letus add that all eigenvalues (including zero values) of matrix B areincreased by the added parameter (λi = λi + α; i = 1, 2, . . . , n),and the inverse matrix B–1
α = (B + α·I)–1 exists and has positiveeigenvalues 1/λi = 1/(λi + α).In our case, the upper limit results from the assumption thatthe diagonal elements of the inverse B–1

α matrix for indeterminatepoints are significantly different in size in relation to the diagonal el-ements of fully determinable points. If the network was completelydeterminable (with zero u-defect), then the diagonal elements ofthe matrix (assuming the use of standardized observations withthe unit mean error value a priori) would be the squares of thecoordinate mean errors. For example, for a horizontal geodetic net-work, the use of the regularization formula means that we add theequations dx = 0, dy = 0 to the existing system (in the previouslyadopted notations, dx, dy are some components of the vector x)with assumed a priori (artificially) large standard deviations (meanerrors), for example, 100 m, and with appropriately small weights(as above) to reveal undetermined points with sufficiently largevalues of the resulting mean errors. For this purpose, we assumethe condition for selecting a regularization parameter (left part as
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Figure 3. A symbolic sketch of an extensive geodetic network in a dis-trict in Poland. In the Polish classification, it is a third-classnetwork related to the network of classes I and II. The sketchshows a place in the network where configuration defects havebeen artificially introduced.

in (24)):
max{bii}2–t < (k · µmax)–2 ≤ α ≪ µ–2

max(‘ ≪ ’ signifies a strong inequality), (28)
where µmax is the expected maximum (approximately) error ofthe coordinate of the determinable point in the network, k is themultiple of the assumed mean error for pseudo-observation dx = 0,
dy = 0, for example, k = 10, 100, 1000, . . . (see attached numericexample) and t is the number of significant binary digits of a realnumber.

5 Illustrative example of detection and location
of configuration defects in a large traverse
geodetic network

The following example illustrates the possibility of detecting con-figuration defects using the Tikhonov regularization. The objectof the test is a relatively large geodetic network with a traversestructure (Figures 3 and 4). The network includes 6227 points with448 reference points, 6298 angular observations, 1487 directionalobservations at 391 stations and 6829 length measurements.In the professional adjustment of this network, the followingstandard deviations of observations were assumed: for directionalobservation: 28 [cc], for length measurements: constant standarddeviation 0.016 m and proportional to the length of 0.0002 m/km.The average length of the side is approx. 350 m. In the resultingreport, the estimated average standard deviation of the point was0.038 m.Artificial configuration defects were introduced in the networkby excluding five angles at the vertices of the traverse marked inFigure 4. The classical least-squares adjustment algorithm signalsthe singularity of the normal matrix and the program is stopped.We know that the defect exists, but we are unable to locate it andquantify it. In practical situations, detecting configuration defectsin such a large observation system would not be an easy task.The Tikhonov regularization procedure becomes helpful here.In accordance with the example provided in section 4.3, we assumethe parameter α = 1/10, 000 (according to the assumption: µx =
µy = 100 m). Table 1 shows a fragment of the network adjustment

Figure 4. Localized configuration defects (numerical results in Table 1).

report, where it is clearly visible that the resultant point error takessignificantly large values just for the points for which there aredeficiencies in the centre angles. These values, however, are smallerthan 100 m because they occur in the vicinity of 5 points and theobservations (angles and lengths) measured at the neighbouringpoints ‘work’ in a sense for the points with configuration defects.Table 2 shows the analogous results of the actual network ad-justment (without defects). Comparing the errors of points that donot have a direct observational relationship with the ‘defect’ pointsin Tables 1 and 2, we find that the Tikhonov regularization prac-tically does not change the accuracy parameters of the network,except for the defective places.The described method of automatic detection and localization ofconfiguration defects, based on the Tikhonov regularization idea,was implemented in 1993 in the GEONET geodetic calculation sys-tem (www.geonet.net.pl). The test calculations presented in thispaper were performed by means of the programs of this system.

6 Conclusions

The article presents the methodology of automatic detection of con-figuration defects in geodetic networks. This issue is important,especially in large networks, at the stage of initial measurementprocessing, where detection of possible data defects is usually a verylabour-intensive task. Computer programs for adjusting geodeticnetworks ‘recognise’ the geometric structure of the network basedon the identifiers (numbers) of points in the observation plans, inthe list of approximate coordinates and in the list of tie point coor-dinates. In case of errors in point identifiers, the network structureis incorrectly defined. In particular, errors in identifiers may resultin situations similar to the case of missing data.Both the theoretical basis and numerous practical tests per-formed with the GEONET system programs show that the describedmethod based on the Tikhonov regularization idea allows to au-tomatically detect possible configuration defects in the geodeticnetwork, interpreted by the computer program as gaps in data sets.In ‘raw’ observational data, as practice teaches, this will often bethe result of errors in point identifiers.When choosing a regularization parameter, we follow its pseudo-probabilistic (pseudo-Bayesian) interpretation. In this interpre-tation, the regularization parameter means very small value ofthe weight of the coordinate of the determined point (e.g. 0.0001),which corresponds to ‘excessively’ large value of the standard devi-ation of the coordinate of the determined point (e.g. 100 m). Suchan assumption does not significantly affect the results of aligningthe part of the network that is free from configuration defects, butallows to identify defect sites by showing large values of diagonal

http://www.geonet.net.pl
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Table 1. Fragment of the result set (coordinates and accuracy parameters) of the network adjustment containingconfiguration defects using Tikhonov regularization with the parameter = 1/10,000 (assuming a prioristandard deviations of the coordinates µx = µy = 100 m)
Point No x [m] y [m] s [m] a [m] b [m] θ[m]

11351051 5734128.7313 7593963.7917 0.0229 0.0165 0.0159 114.89
11351052 5733836.1122 7593815.7940 0.0337 0.0265 0.0207 125.33
11351031 5734659.9622 7593795.2190 0.0338 0.0289 0.0175 47.35
11351030 5734794.1818 7593605.8420 0.0555 0.0500 0.0241 43.80
11351029 5734961.8797 7593605.2604 0.0691 0.0633 0.0277 57.73
11351028 5735150.9054 7593600.7769 0.0883 0.0820 0.0329 69.19
11351027 5735344.5530 7593600.1071 99.9993 99.9993 0.0506 99.78
11351026 5735593.1898 7593599.2057 90.0123 90.0123 0.0558 99.77
11351025 5735845.2708 7593593.3791 43.5952 43.5952 0.0460 101.09
11351024 5736163.6210 7593598.8395 0.0848 0.0792 0.0302 74.12
11351023 5736508.7176 7593598.4821 0.0569 0.0512 0.0249 55.53
11351022 5736792.5664 7593337.1697 0.0276 0.0214 0.0174 61.38
11351112 5737672.6161 7592856.1053 0.0273 0.0207 0.0178 56.84
11351102 5737876.8970 7592817.7828 0.0304 0.0232 0.0196 49.43
11351101 5738021.9520 7592509.6190 0.0357 0.0276 0.0226 49.04

Notations: a, b, θ – ellipse parameters standard deviations; a, b (b ≤ a) – the semi-axes, estimatedstandard deviation of the point: s = (µ2
x + µ2

y)1/2 ; θ – directional angle of the semi-axis a; x, y – CartesianGauss-Krüger coordinates in PL-1992 system.
Table 2. Fragment of the result set (corresponding to the data in Table 1) without defects and without Tikhonovregularization

Point No x [m] y [m] s [m] a [m] b [m] θ[m]

11351051 5734128.7307 7593963.7936 0.0209 0.0153 0.0143 20.80
11351052 5733836.1113 7593815.7965 0.0310 0.0237 0.0199 126.34
11351031 5734659.9605 7593795.2131 0.0263 0.0208 0.0162 53.54
11351030 5734794.1760 7593605.8299 0.0389 0.0322 0.0218 48.54
11351029 5734961.8766 7593605.2400 0.0445 0.0379 0.0234 58.27
11351028 5735150.9048 7593600.7438 0.0500 0.0431 0.0254 66.20
11351027 5735344.5553 7593600.1044 0.0538 0.0467 0.0266 71.41
11351026 5735593.1955 7593599.3810 0.0558 0.0488 0.0270 74.54
11351025 5735845.2670 7593593.0363 0.0545 0.0477 0.0263 74.50
11351024 5736163.6139 7593598.8498 0.0487 0.0421 0.0245 69.68
11351023 5736508.7137 7593598.4877 0.0392 0.0324 0.0221 57.19
11351022 5736792.5638 7593337.1718 0.0230 0.0166 0.0160 87.27
11351112 5737672.6161 7592856.1053 0.0262 0.0199 0.0171 56.84
11351102 5737876.8970 7592817.7828 0.0292 0.0223 0.0189 49.43
11351101 5738021.9520 7592509.6190 0.0343 0.0265 0.0217 49.04

Designations as in Table 1.

elements of the inverse of the regularized normal matrix.The problem of configuration defects may occur in any real ob-servation system, including hybrid networks (satellite-terrestrial,integrated). The given example of the classical network is onlyan illustration of the problem and its solution using the Tikhonovregularization.Regardless of the possibility of applying the Tikhonov regular-ization, there are other methods supporting the identification ofconfiguration defects in the geodetic network. One of them, im-plemented in the GEONET system, consists in the analysis of thetopological structure of the network in terms of counting the num-ber of independent observations that mark each point of the net-work in relation to other points of this network. However, it is easyto give examples of when such an approach will not work. It maybe, for example, a network fragment not related to the rest of thenetwork and not having tie points, but meeting the condition ofcorrect (relative) determinability in relation to other points of thisfragment.
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