PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Some results of homogeneous expansions for a class of biholomorphic mappings defined on a Reinhardt domain in ℂn

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let S*γ,A,B(D) be the usual class of g -starlike functions of complex order γ in the unit disk D={ζ∈C:∣ζ∣<1} , where g(ζ)=(1+Aζ)∕(1+Bζ) , with γ∈C\{0},−1 ≤A < B ≤1,ζ∈D. First, we obtain the bounds of all the coefficients of homogeneous expansions for the functions f∈S*γ,A,B(D) when ζ=0 is a zero of order k+1 of f(ζ)−ζ . Second, we generalize this result to several complex variables by considering the corresponding biholomorphic mappings defined in a bounded complete Reinhardt domain. These main theorems unify and extend many known results.
Wydawca
Rocznik
Strony
art. no. 20220242
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
  • School of Mathematics and Computer Science, Jiangxi Science and Technology Normal University, Nanchang 330038, Jiangxi, People’s Republic of China
autor
  • School of Mathematics and Statistics, Wuhan University, Wuhan 430072, Hubei, People’s Republic of China
  • School of Mathematics and Computer Science, Jiangxi Science and Technology Normal University, Nanchang 330038, Jiangxi, People’s Republic of China
Bibliografia
  • [1] E. Amini, M. Fardi, S. Al-Omari, and K. Nonlaopon, Duality for convolution on subclasses of analytic functions and weighted integral operators, Demonstr. Math. 56 (2023), 20220168, DOI: https://doi.org/10.1515/dema-2022-0168.
  • [2] Y. Y. Lin and Y. Hong, Some properties of holomorphic maps in Banach spaces, Acta. Math. Sin. 38 (1995), 234–241 (in Chinese), DOI: https://doi.org/10.12386/A1995sxxb0024.
  • [3] A. V. Boyd, Coefficient estimates for starlike functions of order α, Proc. Amer. Math. Soc. 17 (1966), no. 5, 1016–1018, DOI: https://doi.org/10.2307/2036080.
  • [4] L. Bieberbach, Über die Koeffizienten der einigen Potenzreihen welche eine schlichte Abbildung des Einheitskreises vermitten, Sitzungsber Preuss Akad Wiss Phys. Math. Kl. 14 (1916), 940–955 (in German).
  • [5] L. De Branges, A proof of the Bieberbach conjecture, Acta. Math. 154 (1985), 137–152, DOI: https://doi.org/10.1007/BF02392821.
  • [6] H. Cartan, Sur la possibilité détendre aux fonctions de plusieurs variables complexes la théorie des fonctions univalentes, in: P. Montel, (Ed.), Lecons sur les Fonctions Univalentes ou Multivalentes, Gauthier-Villars, Paris, 1933, (in French).
  • [7] R. Długosz and P. Liczberski, An application of hyper geometric functions to a construction in several complex variables, J. Anal. Math. 137 (2019), 707–621, DOI: https://doi.org/10.1007/s11854-019-0012-z.
  • [8] H. Hamada and T. Honda, Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables, Chinese Ann. Math. 29(B) (2008), 353–368, DOI: https://doi.org/10.1007/s11401-007-0339-0.
  • [9] M. S. Liu and F. Wu, Sharp inequalities of homogeneous expansions of almost starlike mappings of order α, Bull. Malays. Math. Sci. Soc. 42 (2019), 133–151, DOI: https://doi.org/10.1007/s40840-017-0472-1.
  • [10] T. S. Liu and X. S. Liu, A refinement about estimation of expansion coefficients for normalized biholomorphic mappings, Sci. China. (Ser A) 48 (2005), 865–879, DOI: https://doi.org/10.1007/BF02879070.
  • [11] X. S. Liu, T. S. Liu, and Q. H. Xu, A proof of a weak version of the Bieberbach conjecture in several complex variables, Sci. Chin. Math. 58 (2015), 2531–2540, DOI: https://doi.org/10.1007/s11425-015-5016-2.
  • [12] Q. H. Xu, T. S. Liu, and X. S. Liu, The sharp estimates of homogeneous expansion for generalized class of close-to-quasi-convex mappings, J. Math. Anal. Appl. 389 (2012), 781–781, DOI: https://doi.org/10.1016/j.jmaa.2011.12.023.
  • [13] H. Hamada, G. Kohr, and M. Kohr, The Fekete-Szegö problem for starlike mappings and nonlinear resolvents of the Carathéodory family on the unit balls of complex Banach spaces, Anal. Math. Phys. 11 (2021), 115, DOI: https://doi.org/10.1007/s13324-021-00557-6.
  • [14] X. S. Liu and T. S. Liu, The sharp estimate of the third homogeneous expansion for a class of starlike mappings of order α on the unit polydisk in ℂn, Acta. Math. Sci. 32B (2012), 752–764, DOI: https://doi.org/10.1016/S0252-9602(12)60055-1.
  • [15] Z. H. Tu and L. P. Xiong, Unified solution of Fekete-Szegö problem for subclasses of starlike mappings in several complex variables, Math. Slovaca. 69 (2019), 843–856, DOI: https://doi.org/10.1515/ms-2017-0273.
  • [16] L. P. Xiong, Coefficients estimate for a subclass of holomorphic mappings on the unit polydisk in ℂn, Filomat 35 (2021), 27–36, DOI: https://doi.org/10.2298/FIL2101027X.
  • [17] Q. H. Xu, F. Fang, and T. S. Liu, On the Fekete and Szegö problem for starlike mappings of order α, Acta. Math. Sin: Engl Ser. 33 (2017), 554–564, DOI: https://doi.org/10.1007/s10114-016-5762-2.
  • [18] Q. H. Xu, T. S. Liu, and X. S. Liu, Fekete and Szegö problem in one and higher dimensions, Sci. China Math. 61 (2018), 1775–1788, DOI: https://doi.org/10.1007/s11425-017-9221-8.
  • [19] I. Graham, H. Hamada, and G. Kohr, Parametric representation of univalent mappings in several complex variables, Canadian J. Math. 54 (2002), 324–351, DOI: https://doi.org/10.4153/CJM-2002-011-2.
  • [20] F. Bracci, Shearing process and an example of a bounded support function in S0(B2), Comput. Methods Funct. Theory 15 (2015), 151–157, DOI: https://doi.org/10.1007/s40315-014-0096-5.
  • [21] I. Graham, H. Hamada, G. Kohr, and M. Kohr, Bounded support points for mappings with g -parametric representation in ℂ 2, J. Math. Anal. Appl. 454 (2017), 1085–1105, DOI: https://doi.org/10.1016/j.jmaa.2017.05.023.
  • [22] H. Hamada and G. Kohr, Support points for families of univalent mappings on bounded symmetric domains, Sci. China Math. 63 (2020), 2379–2398, DOI: https://doi.org/10.1007/s11425-019-1632-1.
  • [23] Q. H. Xu and T. Liu, On the Fekete and Szegö problem for the class of starlike mappings in several complex variables, Abstr. Appl. Anal. 2014 (2014), Art. ID: 807026, 6 pp, DOI: https://doi.org/10.1155/2014/807026.
  • [24] R. Długosz and P. Liczberski, Fekete-Szegö problem for Bavrin’s functions and close-to-starlike mappings in ℂn, Anal. Math. Phys. 12(4) (2022), Paper no. 103, 16 pp.
  • [25] M. Elin and F. Jacobzon, Note on the Fekete-Szegö problem for spirallike mappings in Banach spaces, Results Math. 77(3) (2022), Paper no. 137, 6 pp, DOI: https://doi.org/10.1007/s00025-022-01672-x.
  • [26] H. Hamada, Fekete-Szegö problems for spirallike mappings and close-to-quasi-convex mappings on the unit ball of a complex Banach space, Results Math. 78 (2023), Paper No. 109, DOI: https://doi.org/10.1007/s00025-023-01895-6.
  • [27] Y. Lai and Q. H. Xu, On the coefficient inequalities for a class of holomorphic mappings associated with spirallike mappings in several complex variables, Results Math. 76(4) (2021), Paper no. 191, 18 pp, DOI: https://doi.org/10.1007/s00025-021-01500-8.
  • [28] H. Hamada, G. Kohr, and M. Kohr, Fekete-Szegö problem for univalent mappings in one and higher dimensions, J. Math. Anal. Appl. 516 (2022), Paper No. 126526, DOI: https://doi.org/10.1016/j.jmaa.2022.126526.
  • [29] R. Długosz and P. Liczberski, Some results of Fekete-Szegö type for Bavrin’s families of holomorphic functions in ℂn, Annali di Matematica. 200 (2021), 1841–1857, DOI: https://doi.org/10.1007/s10231-021-01094-6.
  • [30] I. Graham and G. Kohr, Geometric Function Theory in One and Higher Dimensions, 1st edition, Marcel Dekker, New York (NY), 2003.
  • [31] M. Nunokawa and J. Sokol, Some applications of first-order differential subordinations, Math. Slovaca 67 (2017), no. 4, 939–944, DOI: https://doi.org/10.1515/ms-2017-0022.
  • [32] X. S. Liu, T. S. Liu, and W. J. Zhang, The sharp estimates of main coefficients for starlike mappings in ℂn, Complex Var. Eliptic Equ. 66 (2021), no. 10, 1782–1795, DOI: https://doi.org/10.1080/17476933.2020.1788002.
  • [33] M. A. Nasr and M. K. Aouf, Radius of convexity for the class of starlike functions of complex order, Bull. Fac. Sci. Assiut. Univ. Sect A. 12 (1983), 153–159.
  • [34] H. M. Srivastava, O. Altıntç, and S. K. Serenbay, Coefficient bounds for certain subclasses of starlike functions of complex order, Appl. Math. Lett. 24 (2011), 1359–1363, DOI: https://doi.org/10.1016/j.aml.2011.03.010.
  • [35] W. Janowski, Some extreme problems for certain families of analytic functions, Ann. Polon. Math. 28 (1973), 297–326.
  • [36] X. S. Liu and T. S. Liu, On the refined estimates of all homogeneous expansions for a subclass of biholomorphic starlike mappings in several complex variables, Chin. Ann. Math. 42B (2021), 909–920, DOI: https://doi.org/10.1007/s11401-021-0297-y.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6bd9ee87-7744-4c3c-b0bb-e5e6cea210b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.