PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vibration suppression of truncated conical shells embedded with magnetostrictive layers based on first order shear deformation theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vibration phenomena in mechanical structures including conical shells are usually undesirable. In order to overcome this problem, this study investigates active vibration control of isotropic truncated conical shells containing magnetostrictive actuators. The first-order shear deformation theory and the Hamilton principle are handled to obtain vibration equations. Moreover, a negative velocity feedback control law is used to actively suppress the vibration. The Ritz and modified Galerkin methods are utilized to obtain results of shell vibration. The results are validated by comparison with the results of literature and finite element software. Finally, the effects of control gain value, magnetostrictive layers thickness, isotropic layer thickness, length and semi-vertex angle of the conical shell on vibration suppression characteristics are obtained in details.
Rocznik
Strony
957--972
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran
  • Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran
Bibliografia
  • 1. Bagheri H., Kiani Y., Eslami M.R., 2017, Free vibration of conical shells with intermediate ring support, Aerospace Science and Technology, 69, 321-332
  • 2. Chopra I., Sirohi J., 2013, Smart Structures Theory, Chapter 6, Cambridge University Press
  • 3. Civalek O., 2006, Free vibration analysis of composite conical shells using the discrete singular convolution algorithm, Steel and Composite Structures, 6, 4, 353
  • 4. Dapino M.J., Calkins F.T., Flatau A.B., 1999, Magnetostrictive devices, [In:] Wiley Encyclopedia of Electrical and Electronics Engineering, J.G. Webster (Edit.), John Wiley and Sons, Inc.
  • 5. Engdahl G., 2000, Handbook of Giant Magnetostrictive Materials, Chapter 2, Academic Press
  • 6. Firouz-Abadi R.D., Rahmanian M., Amabili M., 2014, Free vibration of moderately thick conical shells using a higher order shear deformable theory, Journal of Vibration and Acoustics, 136, 5, 051001
  • 7. Ghorbanpour Arani A., Khoddami Maraghi Z., Khani Arani H., 2017, Vibration control of magnetostrictive plate under multi-physical loads via trigonometric higher order shear deformation theory, Journal of Vibration and Control, 23, 19, 3057-3070
  • 8. Goodfriend M., Shoop K., Hansen T., 1994, Applications of magnetostrictive Terfenol-d, Proceedings of Actuator 94, 4th International Conference on New Actuators, Bremen, Germany
  • 9. Hong C.C., 2014, Rapid heating induced vibration of circular cylindrical shells with magnetostrictive functionally graded material, Archives of Civil and Mechanical Engineering, 14, 4, 710-720
  • 10. Hong C.C., 2016, Rapid heating-induced vibration of composite magnetostrictive shells, Mechanics of Advanced Materials and Structures, 23, 4, 415-422
  • 11. Hunt F.V., 1953, Electroacoustics: The Analysis of Transduction and its Historical Background, American Institute of Physics for the Acoustical Society of America
  • 12. Irie T., Yamada G., Tanaka K., 1984, Natural frequencies of truncated conical shells, Journal of Sound and Vibration, 92, 3, 447-453
  • 13. Jin G., Ma X., Shi S., Ye T., Liu Z., 2014, A modified Fourier series solution for vibration analysis of truncated conical shells with general boundary conditions, Applied Acoustics, 85, 82-96
  • 14. Kamarian S., Salim M., Dimitri R., Tornabene F., 2016, Free vibration analysis of conical shells reinforced with agglomerated carbon nanotubes, International Journal of Mechanical Sciences, 108, 157-165
  • 15. Kumar J.S., Ganesan N., Swarnamani S., Padmanabhan C., 2004, Active control of simply supported plates with a magnetostrictive layer, Smart Materials and Structures, 13, 3, 487-492
  • 16. Lam K.Y., Hua L., 1997, Vibration analysis of a rotating truncated circular conical shell, International Journal of Solids and Structures, 34, 17, 2183-2197
  • 17. Lam K.Y., Hua L., 1999, On free vibration of a rotating truncated circular orthotropic conical shell, Composites, Part B: Engineering, 30, 2, 135-144
  • 18. Lee S.J., Reddy J.N., 2004, Vibration suppression of laminated shell structures investigated using higher order shear deformation theory, Smart Materials and Structures, 13, 5, 1176
  • 19. Li F.M., Kishimoto K., Huang W.H., 2009, The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh-Ritz method, Mechanics Research Communications, 36, 5, 595-602
  • 20. Mehditabar A., Rahimi G.H., Fard K.M., 2018, Vibrational responses of antisymmetric angleply laminated conical shell by the methods of polynomial based differential quadrature and Fourier expansion based differential quadrature, Applied Mathematics and Computation, 320, 580-595
  • 21. Nasihatgozar M., Khalili S.M.R., 2019, Vibration and buckling analysis of laminated sandwich conical shells using higher order shear deformation theory and differential quadrature method, Journal of Sandwich Structures and Materials, 21, 4, 1445-1480, DOI: 10.1177/1099636217715806
  • 22. Oates W.S., Smith R.C., 2008, Nonlinear optimal control techniques for vibration attenuation using magnetostrictive actuators, Journal of Intelligent Material Systems and Structures, 19, 2, 193-209
  • 23. Pradhan S.C., 2005, Vibration suppression of FGM shells using embedded magnetostrictive layers, International Journal of Solids and Structures, 42, 9-10, 2465-2488
  • 24. Pradhan S.C., Reddy J.N., 2004, Vibration control of composite shells using embedded actuating layers, Smart Materials and Structures, 13, 5, 1245-1257
  • 25. Qatu M.S., 2004, Vibration of Laminated Shells and Plates, Elsevier
  • 26. Rao S.S., 2007, Vibration of Continuous Systems, Chapter 15, John Wiley & Sons, Inc.
  • 27. Reddy J.N., 2002, Energy Principles and Variational Methods in Applied Mechanics, Chapter 7, John Wiley & Sons
  • 28. Reddy J.N., 2004, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Chapters 3 and 8, CRC Press
  • 29. Shakouri M., Kouchakzadeh M.A., 2017, Analytical solution for vibration of generally laminated conical and cylindrical shells, International Journal of Mechanical Sciences, 131, 414-425
  • 30. Sofiyev A.H., 2018, Application of the first order shear deformation theory to the solution of free vibration problem for laminated conical shells, Composite Structures, 188, DOI: 0.1016/j.compstruct.2018.01.016
  • 31. Sofiyev A.H., Kuruoglu N., 2018, Determination of the excitation frequencies of laminated orthotropic non-homogeneous conical shells, Composites, Part B: Engineering, 132, 151-160
  • 32. Sofiyev A.H., Zerin Z., Allahverdiev B.P., Hui D., Turan F., Erdem H., 2017, The dynamic instability of FG orthotropic conical shells within the SDT, Steel and Composite Structures, 25, 5, 581-591
  • 33. Tong L., 1994, Free vibration of laminated conical shells including transverse shear deformation, International Journal of Solids and Structures, 31, 4, 443-456
  • 34. Xie K., Chen M., Li Z., 2017, An analytic method for free and forced vibration analysis of stepped conical shells with arbitrary boundary conditions, Thin-Walled Structures, 111, 126-137
  • 35. Zhang Y., Zhou H., Zhou Y., 2015, Vibration suppression of cantilever laminated composite plate with nonlinear giant magnetostrictive material layers, Acta Mechanica Solida Sinica, 28, 1, 50-61
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6bd98817-2ecf-4065-aebe-4d331c0eb8e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.