PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mesh compression algorithm for geometrical coordinates in computational meshes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Application of advanced mesh based methods, including adaptive finite element method, is impossible without theoretical elaboration and practical realization of a model for organization and functionality of computational mesh. One of the most basic mesh functionality is storing and providing geometrical coordinates for vertices and other mesh entities. New algorithm for this task based on on-the-fly recreation of coordinates was developed. Conducted tests are proving that, for selected cases, it can be orders of magnitude faster than naive approach or other similar algorithms.
Wydawca
Czasopismo
Rocznik
Tom
Strony
473--489
Opis fizyczny
Bibliogr. 9 poz., rys., wykr.
Twórcy
  • AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science,Krakow, Poland
  • AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science,Krakow, Poland
Bibliografia
  • [1] Baert J., Lagae A., Dutr ́e P.: Out-of-core Construction of Sparse Voxel Octrees. In:Proceedings of the 5th High-Performance Graphics Conference, pp. 27–32, HPG’13,ACM, New York, NY, USA, 2013. doi: 10.1145/2492045.2492048.
  • [2] Bangerth W., Burstedde C., Heister T., Kronbichler M.: Algorithms and DataStructures for Massively Parallel Generic Adaptive Finite Element Codes,ACMTrans Math Softw, vol. 38(2), pp. 14:1–14:28, 2012. doi: 10.1145/2049673.2049678.
  • [3] Berger M., Colella P.: Local adaptive mesh refinement for shock hydrodynamics,Journal of Computational Physics, vol. 82(1), pp. 64–84, 1989. doi: 10.1016/0021-9991(89)90035-1.
  • [4] Berger M.J., Oliger J.: Adaptive mesh refinement for hyperbolic partial differen-tial equations,Journal of Computational Physics, vol. 53(3), pp. 484–512, 1984.doi: 10.1016/0021-9991(84)90073-1.
  • [5] Burstedde C., Wilcox L., Ghattas O.: p4est: Scalable Algorithms for ParallelAdaptive Mesh Refinement on Forests of Octrees,SIAM Journal on ScientificComputing, vol. 33(3), pp. 1103–1133, 2011. doi: 10.1137/100791634.
  • [6] Garimella R.V.: Mesh Data Structure Selection for Mesh Generation and FEA Ap-plications,International Journal of Numerical Methods in Engineering, vol. 55(4),pp. 451–478, 2002. doi: 10.1002/nme.509.
  • [7] Hou T., Efendiev Y.:Multiscale Finite Element Methods. Theory and Applications,Surveys and tutorials in the applied mathematical sciences, Springer, New York,NY, 2009. doi: 10.1007/978-0-387-09496-0.
  • [8] PETSc Toolkit, 2014. http://www.mcs.anl.gov/petsc.
  • [9] Tautges T., Meyers R., Merkley K., Stimpson C., Ernst C.:MOAB: A Mesh-Oriented Database, SAND2004-1592, Sandia National Laboratories, 2004. Report.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6bd8bd4b-0cfc-40ab-a291-8d42ab0d31ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.