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Abstract: This paper presents a feasible design for a con-
trol algorithm to synthesize an adaptive neuro-fuzzy inference
system-based PID continuous sliding mode control system (ANFIS-
PIDCSMC) for adaptive trajectory tracking control of the rigid
robot manipulators (RRMs) in the joint space. First, a PID sliding
mode control algorithm with sliding surface dynamics-based contin-
uous proportional-integral (PI) control action (PIDSMC-SSDCPI)
is presented. The global stability conditions are formulated in terms
of Lyapunov full quadratic form such that the robot system out-
put can track the desired reference output. Second, to increase the
control system robustness, the PI control action in the PIDSMC-
SSDCPI controller is supplanted by an ANFIS control signal to pro-
vide a control approach that can be termed adaptive neuro-fuzzy
inference system-based PID continuous sliding mode control system
(ANFIS-PIDCSMC). For the proposed control algorithm, numeri-
cal simulations using the dynamic model of RRM with uncertainties
and external disturbances show high quality and effectiveness of the
adopted control approach in high-speed trajectory tracking control
problems. The simulation results that are compared with the re-
sults, obtained for the traditional controllers (standalone PID and
traditional sliding mode controller (TSMC)), illustrate the fact that
the tracking control behavior of the robot system achieves acceptable
tracking performance.
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1. Introduction

Robot manipulator control systems are becoming increasingly important in
research and industry (see, e.g., Siciliano et al., 2009; Siciliano and Khatib,
2008). The main challenge in the motion control problem of rigid manipulators
is the complexity of their dynamics and the presence of uncertainties (Siciliano
et al., 2009; Siciliano and Khatib, 2008; Capisani, Ferrara and Magnani, 2007;
Alavandar and Nigam, 2009a,b). A variety of approaches have been proposed
in the past decade to deal with the motion control of robot manipulators
with uncertainty (see Ho, Wong and Rad, 2007; Cheng, Guang Hou and Tan,
2009; Capisani, Ferrara and Magnani, 2007; Barambones and Etxebarria, 2000;
Ortega and Spong, 1989).

Sliding mode control (SMC) (see, e.g., Bharath et al., 2017; Komsta, Oijen
and Antoszkiewicz, 2013; Wang et al., 2014; Mahmoodabadi, Taherkhorsandi
and Bagheri, 2014; Prasad, Pulwar and Lishor, 2017) has been considered
a hot research field for its robustness regarding modeling and control in the
presence of uncertainties and external disturbances (Hui et al., 2014; Hu et
al., 2012; Li, Li and Li, 2012; Mahmoodabadi, Taherkhorsandi and Bagheri,
2014; Ouyang, Acob and Pano, 2014; Sun et al., 2011; Utkin, Guldner and
Shi, 2000; Xiang and Chen, 2011; Chang, 2000). However, SMC suffers from
definite drawbacks (see Ouyang, Acob and Pano, 2014). First, it is generally
difficult to obtain perfect dynamical models for highly coupled nonlinear
systems. Secondly, the chattering phenomenon will often excite high frequency
dynamics of the system (Zeinali and Notash, 2010; Chang, 2000). Moreover,
a priori knowledge of the upper bounds of the norm of the perturbation vec-
tor is required to obtain robustness and convergence (Zeinali and Notash, 2010).

The design of robust adaptive controller without knowledge of the upper
bound of uncertainties was presented in Su and Leung (1993), Elmali and Olgac
(1992), Yu and Lloyd (1997), Gong and Yao (1999), and Zeinali and Notash
(2010). In Choi and Cheol Lee (2009), a proportional-integral-derivative,
PID-based sliding mode controller using an observer was also proposed to solve
the chattering problem of sliding mode control. In Zeinali and Notash (2010),
the authors exploited the adaptive control technology and the sliding mode
control theory to adopt controller, in which the discontinuous control effect of
the SMC is replaced by a smooth continuous control term that is based on the
dynamics of the sliding surface. The control algorithm, adopted in Zeinali and
Notash (2010), used a model-based control term and an uncertainty observer
to estimate the perturbation from the sliding surface dynamics. The authors
of Jafarov, Parlakçi and Istefanopoulos (2005) proposed the PID sliding mode
controller with PID sliding surface, in which the conventional equivalent
control term is not used, because the controller needs to use the exact full
robot dynamics knowledge, which involves unavailable parameter uncertainties..
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However, the control law in Jafarov, Parlakçi and Istefanopoulos (2005) involves
the discontinuous signum function, which causes serious chattering phenomenon.

The adaptive neuro-fuzzy inference system (ANFIS) (see Melin and Castillo,
2005; Bhattacharyya et al., 2015; Kar, Das and Ghosh, 2014), proposed by
Jang (Jang, 1993) as a hybrid intelligent system, is one of the most widely used
fuzzy inference systems. It is constructed from a framework of adaptive neural
networks embedded with the fuzzy inference systems (Kar, Das and Ghosh,
2014). The authors of Alavandar and Nigam (2009c) presented a new hybrid
adaptive neuro-fuzzy control algorithm (ANFIS) for manipulator control with
uncertainties. The hybrid controller consists of adaptive neuro-fuzzy controller
and conventional controller such that the outputs of these controllers are
augmented with ANFIS control signal to generate the final actuation signal.

Motivated by the investigations mentioned above, this paper is concerned
with the problem of designing robust adaptive control algorithms meant to
tackle the stabilizing and tracking problems of RRMs with structured and
unstructured uncertainties in dynamics, and to achieve effective elimination of
the inherent drawbacks of the previous work (see Jafarov, Parlakçi and Iste-
fanopoulos, 2005; Zeinali and Notash, 2010, and Alavandar and Nigam, 2009c)
without involving sophisticated mathematics, as well as to increase system
robustness against parameter uncertainty, load disturbance and nonlinearities.

As an extended control methodology relative to the developments presented
in Jafarov, Parlakçi and Istefanopoulos (2005), Zeinali and Notash (2010) and
Alavandar and Nigam (2009c), first, a PID sliding mode control algorithm with
sliding surface dynamics-based continuous proportional-integral (PI) control ac-
tion (PIDSMC-SSDCPI) is presented. In this control methodology, the equiv-
alent control term in TSMC is replaced by PID controller with feedback re-
lay control action, and the discontinuous control signal of TSMC is replaced
by a sliding surface dynamics-based continuous proportional-integral (SSDCPI)
control action. The overall closed-loop control system guarantees the global
asymptotic stability and the global stability conditions are formulated in terms
of Lyapunov full quadratic form, such that the robot system output can track
the desired reference output asymptotically under the conditions of parameter
variations, modeling uncertainties, external disturbances and nonlinear friction.
Second, to increase the control system robustness and suppress the effects of
un-modeled dynamics and external disturbances on the trajectory tracking er-
ror, the PI control action in the PIDSMC-SSDCPI controller is supplanted by
an ANFIS control signal (Alavandar and Nigam, 2009c) to provide a control
approach that can be termed adaptive neuro-fuzzy inference system-based PID
continuous sliding mode control system (ANFIS-PIDCSMC).
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The simulations have been carried out to evaluate the effectiveness of the
proposed control algorithm for robot manipulator arm motion control. The
proposed methodology is compared with conventional controllers (TSMC and
standalone PID). The simulation results demonstrated that the behavior of the
proposed algorithm is superior to the traditional ones. The remainder of this pa-
per is organized as follows: Section 2 presents the characteristics of the proposed
PID continuous sliding mode control algorithm with continuous control action,
Section 3 describes the stability analysis of the proposed PIDSMC-SSDCPI,
Section 4 presents the ANFIS-based PID continuous sliding mode controller,
Section 5 provides the simulation results and Section 6 summarizes the conclu-
sions of the work.

2. PID continuous sliding mode control algorithm with

continuous control action

The Euler-Lagrange dynamic equations for an n-link robot are given by (see
Abdallah et al., 1991; Siciliano et al., 2009, Cheng, Guang Hou and Tan, 2009):

B(q)q′′ + C(q, q′)q′ + Fd q
′ + Fs(q

′) + τd(t) + g(q) = τ (1)

where q, q′, q′′ ∈ Rn are the joint position, velocity, and acceleration vectors,
respectively; B(q) denotes the n × n bounded positive definite inertia matrix;
C(q, q′) expresses the n×n Coriolis, centripetal matrix; g(q) is the gravity vector;
Fd ∈ Rn×n and Fs(q

′) ∈ Rn represent the dynamic friction coefficient matrix
and static friction vector, respectively; τd(t) is the vector of disturbances and
un-modeled dynamics; u(t) = τ is the control vector representing the torque
exerted on joints. In general, the robot parameters of mass, inertia, Coriolis
and centrifugal force effect, friction, and gravity effects involve a nominal part
and some variation, therefore, in the presence of the model uncertainties and
external disturbances, Eq. (1) can be written down as

(B(q)+∆B) q′′+(C(q, q′)+∆C)q′ + Fd q
′+Fs(q

′)+τd(t)+(g(q)+∆g) = τ (2)

where ∆B(q), ∆C(q, q′) and ∆g(q) are the unknown parts of the robot inertia,
Coriolis and centrifugal forces effect, and gravity torques, respectively.

By rearranging the terms in Eq. (2), we obtain:

B(q)q′′+C(q, q′)q′+g(q)+∆B q′′+∆Cq′′+∆g+Fd q
′+Fs(q

′)+τd(t) = u(t). (3)

It is assumed that all uncertain elements can be lumped as follows:

d(t) = −{∆B(q) q′′ +∆q′ +∆g + Fd q
′ + Fs(q

′) + τd(t)} . (4)

The dynamics model is written down then as:

q′′ = −B−1 {C(q, q′)q′ + g(q)− d(t)} +B−1u(t) (5)
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where d(t) represent the uncertainty vector of the direct dynamics that consists
of the vectors of all uncertainties including external disturbances.

The PID sliding surface s(t) in the space of tracking error can be defined as
in Jafarov, Parlakçi and Istefanopoulos (2005) and Zeinali and Notash (2010),
namely:

s(t) = Kde
′(t) +Kpe(t) +Ki

∫

e(t)dt (6)

where s(t) is an n×1 vector representing the sliding surface; Kp is an n×n diag-
onal positive definite proportional gain matrix, Ki is an n×n diagonal positive
definite integral gain matrix, Kd is an n×n diagonal positive definite derivative
gain matrix, being the parameters to be selected and e(t) = q(t) − qd(t) is
the tracking position error vector, in which qd(t) is the desired trajectory vector.

For the tracking control problem of RRM, a control input u(t) that represents
the vector of the torques applied to the joints is designed in such a manner that
the error state trajectory is kept on the sliding surface s(t) = 0 for all the
time t > 0. To achieve this objective, the proposed PID sliding mode control
algorithm with sliding surface dynamics based continuous proportional-integral
(PI) control action (PIDSMC-SSDCPI) is chosen as:

u(t, s) = uPID(t) + uSSDCPI(t, s), (7)

where uPID(t) and uSSDCPI(t, s) are the PID control and the sliding surface
dynamics based continuous proportional-integral (PI) control actions, respec-
tively. The PID control term, uPID(t), has the advantages of a simple struc-
ture, clear functionality and easy implementation, and it replaces the equiv-
alent control term of the traditional sliding mode control (TSMC), which is
not utilized because it requires perfect knowledge of the mathematical model of
robot dynamics. The continuous proportional-integral (PI) control action based
on sliding surface dynamics, uSSDCPI(t, s), replaces the discontinuous control
term of TSMC, which eliminates the chattering problem of TSMC, while pre-
serving fast convergence and system robustness against parameter uncertainty,
load disturbance, and nonlinearities.

3. Stability analysis of the proposed PIDSMC-SSDCPI

Lyapunov stability approach is employed to investigate the stability property
of the proposed controller. The Lyapunov function candidate is defined as in
Jafarov, Parlakçi and Istefanopoulos (2005) and Zeinali and Notash (2010):

V (t) =
1

2
sTBs+

1

2

∼

d
T

K−1
is

∼

d, (8)
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where
∼

d
T

(t) is defined as the vector of the lumped uncertainty estimation error
and is given by Zeinali and Notash (2010):

∼

d =
∧

d −d, (9)

and here
∧

d is the estimated perturbation vector of the unknown actual
perturbation vector d that is defined in Eq. (4).

The derivative of the Lyapunov function is:

V ′ = sTB′s+
1

2
sTB′s+

∼

d
T

K−1
is

∼

d′ . (10)

From Eq. (6), one can get:

s′ = Kde
′′ +Kpe

′ +Kie. (11)

Substitution of e′′ = q′′ − q′′d in Eq. (11) yields:

s′ = Kd {q
′′ − q′′d}+Kpe

′ +Kie. (12)

Then, by substituting for q′′ from Eq. (5) one gets:

∼
s= Kpe

′ +Kie−KdB
−1 [q′ + g − d] +KdB

−1u−Kdq
′′
d . (13)

Substitution of Eq. (13) into Eq. (10) leads to:

V ′ = sTB
{
Kpe

′ +Kie−KdB
−1 [q′ + g − d] +KdB

−1u−Kdq
′′
d

}

+ 1
2s

TB′′s+
∼

d
T

K−1
is

∼

d′.
(14)

Further, substitution of Eq. (7) into Eq. (14) gives:

V ′ = sT×
{
BKpe

′ +BKie−BKdB
−1 [q′ + g − d] +BKdB

−1uPID +BKdB
−1uSSDCPI

}

−sTBKdq
′′
d +

1

2
sTB′s+

∼

d
T

K−1
is

∼

d′. (15)

Finally, by substituting q′ = e′ + q′d into Eq. (3) we obtain:

V ′ = sT×
{
BKpe

′+BKie−BKdB
−1 [C′e+ g − d]+BKdB

−1uPID+BKdB
−1uSSDCPI

}

−sTBKdB
−1C′qd − sTBKdq

′′
d +

1

2
sTB′ s+∼ dTK−1

is

∼

d′ . (16)
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The PID control law uPID(t) can be chosen as:

uPID(t) =

−

{

Ks +Kp,PID ‖e(t)‖+Ki,PID

∥
∥
∥
∥

∫

e(ξ)dξ

∥
∥
∥
∥
+Kd,PID ‖e′(t)‖

}
s(t)

‖s(t)‖
,

(17)

where Ks represents an n × n diagonal positive definite switching control gain
matrix, Kp,PIDis an n× n diagonal positive definite proportional gain matrix,
Ki,PIDis an n × n diagonal positive definite integral gain matrix, and Kd,PID

is an n × n diagonal positive definite derivative gain matrix. These matrices
are design parameters to be selected.

The sliding surface dynamics based continuous proportional-integral (PI)
control action, uSSDCPI(t, s), can be chosen as (see Zeinali and Notash, 2010):

uSSDCPI(t) = −

{

Kpss(t)+
∧

d (t)

}

, (18)

where Kps is an n × n diagonal positive definite matrix that is a design
parameter to be selected.

Now, by substituting Eq. (3) and Eq. (18) into Eq. (3) we arrive at:

V ′ = sT
{
BKpe

′ +BKie−BKdB
−1 [C′e+ g − d]

}

−sT
{

BKdB
−1

[

Ks+Kp,PID ‖e‖ +Ki,PID

∥
∥
∥
∥

∫

e(ξ)dξ

∥
∥
∥
∥
+Kd,PID ‖e′‖

]
s

‖s‖

}

−sTBKdB
−1

[

Kpss+
∧

d

]

− sTBKdB
−1C′qd − sTBKdc

′′
d+

1

2
sTB′s+

∼

d
T

K−1
is

∼

d′ .

(19)

By using sT s = ‖s‖
2
, Kd = kdI, Kp = kp I, Ki = kiI, Ks = ksI, Kp,PID =

kp,PIDI, Ki,PID = ki,PIDI, Kd,PID = kd,PIDI and Kps = kpsI, where In×n

denotes the identity matrix of dimension n× n, Eq. (??) can be rearranged as:

V ′ = sT {kpB
′e+ kiBe− kdC

′e− kdg}
−kd

[
ks + kp,PID ‖e‖+ [ki,PID

∥
∥
∫
edξ

∥
∥+ kd,PID ‖e′‖

]

‖s‖ − kdkps ‖s‖
2 − kds

T
∧

d +kds
Td

−kds
TC′qd − kds

TB′′qd +
1
2s

T {B′ − 2C} s + sTC s+
∼

d
T

K−1
is

∼

d′ .

(20)

Since (B′ − 2C) is a skew symmetric matrix, Eq. (20) becomes:

V ′ = sT {kpB
′e + kiBe − kdC

′e− kdg}
−kd

[
ks + kp,PID ‖e‖+ ki,PID

∥
∥
∫
edξ

∥
∥+ kd,PID ‖e′‖

]

‖s‖ − kdkps ‖s‖
2
− kds

T
∧

d +kds
T d

−kds
TC′qd − kds

TB′′qd + sTCs+
∼

d
T

K−1
is

∼

d′.

(21)
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Substituting s(t) from Eq. (6) into Eq. (21), with the help of Kd = kdI,
Ki = kiI and Kp = kpI, and rearranging the result yields:

V ′ = sT
{
kpB

′e+ [kiB + kpC] e+ kiC
∫
edt− kdg

}

−kd
[
ks + kp,PID ‖e‖+ ki,PID

∥
∥
∫
edξ

∥
∥+ kd,PID ‖e′‖

]

‖s‖ − kdkps ‖s‖
2
− kds

TC′qd

−kds
TB′′qd − kds

T

(
∧

d −d

)

+
∼

d
T

K−1
is

∼

d′.

(22)

By exploiting Eq. (9) with its first time derivative, and the facts that
(

sT
∼

d=
∼

d
T

s

)

and (Kis = kis I) ,

we will bring Eq. (22) to the form:

V ′ = sT
{
kpB

′e+ [kiB + kpC] e+ kiC
∫
edt− kdg

}

−kd
[
ks + kp,PID ‖e‖+ ki,PID

∥
∥
∫
edξ

∥
∥+ kd,PID ‖e′‖

]

‖s‖ − kdkps ‖s‖
2
− kds

TC′qd

−kds
TB′′qd−

∼

d
T
{

kds−
1
kis

∧

d′
}

− 1
kis

∼

d
T

d′.

(23)

The first time derivative (dynamics) of the estimated uncertainty vector can be
chosen as (see Zeinali and Notash, 2010):

∧

d′(t) = kiskd s(t). (24)

Integration of Eq. (24) results in determination of the time evolution of the
estimated uncertainty vector:

∧

d= kiskd

∫

sdt. (25)

Substituting Eq. (24) into Eq. (23) leads to:

V ′ = sT
{
kpB

′e+ [kiB + kpC] e+ kiC
∫
edt− kdg

}

−kd
[
ks + kp,PID ‖e‖+ ki,PID

∥
∥
∫
edξ

∥
∥+ kd,PID ‖e′‖

]

‖s‖ − kdkps ‖s‖
2

−kds
TC′qd − kds

TB′qd −
1
kis

∼

d′
T

d′.

(26)

By taking the norms of the different terms, Eq. (26) can be rewritten as:

V ′ ≤ ‖s‖

{

kp ‖B‖ ‖e′‖+ (ki ‖B‖+ kp ‖C‖) ‖e‖+ ki ‖C‖

∥
∥
∥
∥

∫

edt

∥
∥
∥
∥
+ kd ‖g‖

}

−kd

{

ks + kp,PID ‖e‖+ ki,PID

∥
∥
∥
∥

∫

e(ξ)dξ

∥
∥
∥
∥
+ kd,PID ‖e′‖

}

‖s‖ − kdkps ‖s‖
2

+kd ‖s‖ ‖C(q, q′)‖ ‖q′d‖+ kd ‖s‖ ‖B‖ ‖q′′d‖ −
1

kis

∼

d
T

d′. (27)
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Then, Eq. (3) can be rearranged to the following form:

V ′ ≤ −‖s‖ {[kdkd,PID − kp ‖B‖] ‖e′‖ + [kdkp,PID − ki ‖B‖ − kp ‖C‖] ‖e‖
+ [kdki,PID − ki ‖C‖]

∥
∥
∫
edt

∥
∥+ kd [ks − ‖g‖ − ‖C‖ ‖q′d‖ − ‖B‖ ‖q′′d‖]

}

−kdkps ‖s‖
2
− 1

kis

∼

d
T

d′.

(28)

For the derivative of the Lyapunov function to be negative definite, V ′ < 0,
the parameters of the proposed PID control action in Eq. (3) must satisfy the
following stability conditions:

kd,PID ≥
kp‖B(q)‖

kd
, kp,PID ≥

ki ‖B(q)‖+kp‖C(q,q′)‖
kd

ki,PID ≥
ki‖C(q,q′)‖

kd
, ks ≥ ‖g(q)‖+ ‖C(q, q′)‖ ‖q′d‖+ ‖B(q)‖ ‖q′′d‖ .

(29)

Substitution of Eq. (29) into Eq. (28) yields:

V ′ ≤ −kdkps ‖s‖
2
−

1

kis

∼

d
T

d′. (30)

In Eq. (30), the first term is negative definite. If the perturbation vector d(t) is
slowly time-varying (Zeinali and Notash, 2010), which is a reasonable assump-
tion in many control applications (i.e. d′(t) ≈ 0 is negligible), then the second

term

(

k−1
is

∼

d
T

d′ ≈ 0

)

is neglected, and therefore, it follows that V ′(t) < 0 and

the global asymptotic stability is guaranteed even if the perturbation vector
d(t) takes important values, as long as d(t) is slowly time varying. The diffi-
cult situation is when the perturbation vector d(t) is quickly time-varying (see
Zeinali and Notash, 2010), i.e. d′(t) 6= 0. In this case, the sufficient condi-

tion k−1
is

∼

d
T

d′(t) > 0 ensures that the asymptotic stability is guaranteed and
V ′(t) < 0. Also, for a proper selection of the parameter values for the pertur-

bation estimator in Eq. (25), (kd, kis), the estimation error vector
∼

d
T

is very

small and converges to zero

(
∼

d
T

→ 0

)

. Therefore, V ′(t) < 0 and asymptotic

stability is achieved. From the above analysis, it can be concluded that global
asymptotic stability is guaranteed since the derivative of the Lyapunov function
is negative definite, V ′(t) < 0.

Based on Eqs. (7), (3), (3) and (25), the total proposed PID sliding mode
control algorithm with sliding surface dynamics-based continuous proportional-
integral (PI) control action (PIDSMC-SSDCPI) can be expressed as:
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u(t, s) = uPID(t) + uSSDCPI(t, s)

uPID(t) = −
{
Ks +Kp,PID ‖e(t)‖+Ki,PID

∥
∥
∫
e(ξ)dξ

∥
∥+Kd,PID ‖e′(t)‖

}
s(t)

‖s(t)‖

uSSDCPI(t) = −

{

Kpss(t)+
∧

d (t)

}

= −







Kpss(t) + kiskd

∫

s(t)dt

︸ ︷︷ ︸

∧

d(t)







u(t, s) = −

[{

Ks +Kp,PID ‖e(t)‖+Ki,PID

∥
∥
∥
∥

∫

e(ξ)dξ

∥
∥
∥
∥
+Kd,PID ‖e′(t)‖

}
s(t)

‖s(t)‖

]

︸ ︷︷ ︸

uPID(t)

−

[{

Kpss(t) + kiskd

∫

s(t)dt

}]

︸ ︷︷ ︸

uSSDCPI(t,s)

.

(31)

The block diagram of the proposed PID sliding mode controller algorithm with
sliding surface dynamics based continuous proportional-integral (PI) control
action (PIDSMC-SSDCPI) is shown in Fig. 1.

4. ANFIS-based PID continuous sliding mode controller

Since the operating conditions of the robot manipulators tend to vary a lot, the
design of a robust controller to work under a wide range of operating conditions
has been given a great attention with the aim to enhance the closed-loop control
system tracking performance. In this section, an adaptive neuro-fuzzy inference
system (ANFIS) based-PID continuous sliding mode control algorithm (ANFIS-
PIDCSMC) is adopted, in which the sliding surface dynamics-based continuous
proportional-integral (SSDCPI) control action, uSSDCPI(t, s), realized with the
presented PIDSMC-SSDCPI control methodology is supplanted by ANFIS con-
trol action uANFIS(t).

Integration of the ANFIS technique as an intelligent and soft computing
methodology (Alavandar and Nigam, 2009c; Zeinali and Notash, 2010) with
the PID sliding mode control scheme secures fast tracking control behavior and
improves the robot system robustness. The ANFIS-PIDCSMC controller can
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Figure 1. Block diagram of the PID sliding mode controller with continuous
proportional-integral (PI) control action

be expressed as:

u(t) = uPID(t) + uANFIS(t)

u(t) = −

{

Ks +Kp,PID ‖e(t)‖+Ki,PID

∥
∥
∥
∥

∫

e(ξ)dξ

∥
∥
∥
∥
+Kd,PID ‖e′(t)‖

}

s(t)

‖s(t)‖
+ uANFIS(t). (32)

The schematic diagram of the ANFIS-PIDCSMC controller is provided in Fig. 2.

The ANFIS approach (see Alavandar and Nigam, 2009c; Kar, Das and
Ghosh, 2014) uses a hybrid learning algorithm to identify parameters of Sugeno-
type fuzzy inference systems. It applies a combination of the least-squares
method and the backpropagation gradient descent method for training the mem-
bership function (MF) parameters to emulate a given training data set (see
Buragohain and Mahanta, 2008; Alavandar and Nigam, 2009c; Aloui et al.,
2010; and Bhattacharyya et al., 2015). In the architecture of the ANFIS con-
figuration, a first-order Takagi–Sugeno–Kang (TSK) fuzzy inference system is
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exploited with fuzzy IF-THEN rules that can be expressed as:

Rule 1 : If (s) is A1 and
(∫

sdt
)

is B1 then z1 = a1 (s) + b1
(∫

sdt
)
+ c1

Rule 2 : If (s) is A2 and
(∫

sdt
)

is B2 then z2 = a2 (s) + b2
(∫

sdt
)
+ c2

...

...

...
Rule n : If (s) is Am1

and
(∫

sdt
)
is Bm2

then zn = an (s) + bn
(∫

sdt
)
+ cn

(33)

where A1, A2 . . . Am1
and B1, B2 . . . Bm2

are the fuzzy sets (membership func-
tions) in the antecedent defined for the two inputs (s) and

(∫
sdt

)
, respectively,

where m1 and m2 are the numbers of membership functions assigned to the two
inputs (s) and

(∫
sdt

)
, respectively. The parameters a1, a2 . . . an, b1, b2 . . . bn

and c1, c2 . . . cn are the consequent parameters that are the design parameters
to be determined during the training process, where n represents the number of
fuzzy rules. The general ANFIS architecture is shown in Fig. 2 for the case of
two fuzzy rules. It is composed of five layers, where each layer contains several
nodes, described by the node function such that Oj

i is the output of the node i

in layer j.
In Fig. 2, a circle indicates a fixed node and a square represents an adap-

tive node. The function of each layer is explained as follows (see Mozaffari,
Behzadipour and Kohani, 2014; Alavandar and Nigam, 2009c; Bhattacharyya
et al., 2015; and Sumathis and Surekha, 2010):

Layer 1 (Fuzzy layer): in the first layer, all the nodes are adaptive nodes. The
outputs of layer 1 are the fuzzy membership grades of the inputs, which
are given by (see Su and Leung, 1993):

O1
i = µAi

(s), i = 1, 2
O1

i = µBi−2

(∫
sdt

)
, i = 3, 4

(34)

where Ai and Bi are the linguistic labels (fuzzy sets or membership func-
tions) of the inputs (s) and

(∫
sdt

)
, respectively. µAi

(s) and µBi−2

(∫
sdt

)

are the grades (degrees) of membership for the inputs (s) and
(∫

sdt
)
, re-

spectively. The outputs of this layer form the membership values of the
premise part and parameters contained in membership functions of fuzzy
sets called premise parameters. The µAi

(s) and µBi−2

(∫
sdt

)
are chosen

as Gaussian membership functions (Sumathi and Surekha, 2010):

µAi
(s) = exp

[

−
(

s−cAi

σAi

)2
]

µBi−2

(∫
sdt

)
= exp

[

−
(

(
∫
sdt)−cBi

σBi

)2
]

.

(35)
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Figure 2. Block diagram of the ANFIS-based PID sliding mode controller
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where {cAi, σAi, cBi, σBi} is the variable set of the membership functions.
These parameters are called premise variables.

Layer 2 (Product layer): in the second layer, every node is a fixed node, labeled
(Π), acting as a simple multiplier. The outputs of these nodes, which are
called the firing strengths of the fuzzy rules, are given by (see Mozaffari,
Behzadipour and Kohani, 2014; Bhattacharyya et al., 2015; Sumathi and
Surekha, 2010):

ωi = O2
i = µAi

(s) × µBi

(∫

sdt

)

i = 1, 2. (36)

Layer 3 (Normalized layer): in the third layer, every node is a fixed node,
labeled N , calculating the normalized firing strengths as the ratio of the
firing strength of node i to the sum of the firing strengths of all fuzzy
rules. The outputs of these nodes, which are called the normalized firing
strengths, are given by (see Alavandar and Nigam, 2009c; Bhattacharyya
et al., 2015; Sumathi and Surekha, 2010):

O3
i = ωi =

ωi

ω1 + ω2
=

ωi

2∑

i=1

ωi

i = 1, 2. (37)

Layer 4 (Defuzzification layer): in the fourth layer, every node is an adaptive
node, which calculates the outputs of the fuzzy rules as (see Bhattacharyya
et al., 2015; Sumathi and Surekha, 2010):

O4
i = ωi zi = ωi

(

ai s + bi

(∫

sdt

)

+ ci

)

i = 1, 2. (38)

where {ai, bi, ci} constitutes the parameter set. Parameters in this layer
are referred to as consequent parameters.

Layer 5 (Output layer): In the fifth layer, there is a single fixed node, labeled
(
∑

), which calculates the overall output as the sum of all incoming signals
that is given by (see Bhattacharyya et al., 2015; Sumathi and Surekha,
2010):

O5
i =

2∑

i=1

ωi zi = ω1 z1 + ω2 z2 =







ω1z1
2∑

i=1

ωi







+







ω2z2
2∑

i=1

ωi







=

2∑

i=1

ωizi

2∑

i=1

ωi

. (39)

From the above explanation of the five layers, illustrated in Fig. 2, it is clear
that an ANFIS is a kind of fuzzy model, in which a feed-forward neural network
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is used for the weighted value evaluation of fuzzy rules (Angeles, 2003; Choi and
Cheol Lee, 2009). In ANFIS, a feed-forward back-propagation algorithm tunes
the parameters of the fuzzy inference system (FIS), such as membership func-
tions parameters of the antecedent part and consequent parameters, by applying
neural learning rules (Angeles, 2003; Choi and Cheol Lee, 2009). It can be seen
that there are two modifiable parameter sets, namely: {cAi, σAi, cBi, σBi}, la-
beled as premise parameters, and {ai, bi, ci}, labeled as consequent parameters.
The aim of the training algorithm for this architecture is to tune the above two
parameter sets to make the ANFIS output match the training data (Mozaffari,
Behzadipour and Kohani, 2014).

5. Simulation results

To verify the validity of the proposed control strategy, the ANFIS-PIDCSMC
control approach is tested for the trajectory tracking control of a rigid robot
manipulator (RRM), see Elmali and Olgac (1992), shown in Fig. 3. In this val-
idation, numerical simulations, which are performed in the case of high speed
motion and the case of a pick-and-place task, are presented to show the effec-
tiveness of the proposed approach. The simulations are carried out using the
Simulink software library of the MATLAB programming language. For compa-
rison, the traditional sliding mode controller (TSMC) and the standalone PID
controller are used.

Figure 3. Three-link rigid robot manipulator

The RRM is described by three nonlinear coupled differential equations
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representing the dynamical model (see Elmali and Olgac, 1992), namely:

{Il1 +ml1l
2
1 + k2r1Im1 + Il2 +mm2a

2
1 + Im2 +ml2(a

2
1 + l22 + 2a1l2c2) + Il3

+Im3 +mm3(a
2
1 + a22 + 2a1a2c1) +ml3(a

2
1 + a22 + l23 + 2a1a2c2 + 2a1l3c23

+2a2l3c3)}q
′′
1 + {Il2 + Il3 + kr2Im2 + Im3 +mm3a

2
2c2 +ml2(a

2
2 + a1a2c2)

+ml3(a
2
2 + l23 + a1a2c2 + a1l3c23 + 2a2l3c3)}q

′′
2 + {Il3 + kr3Im3 +ml3(l

2
3

+a1l3c23 + a2l3c3)}q
′′
3 −mm3a1a2s1q

′2
1 − 2(ml2a1l2s2 +ml3a1a2s2

+ml3a1l3s23)q
′
1q

′
2 − 2(ml3a1l3s23 +ml3a2l3s3)q

′
1q

′
3 − (ml3a1a2s2

+ml3a1l3s23 +mm3a1a2s2 +ml2a1a2s2)q
′2
2 − 2(ml3a1l3s23 +ml3a2l3s3)q

′
2q

′
3

−(ml3a2l3s2 +ml3a1l3s23)q
′2
3 + (ml1l1 +ml2a1 +mm2a1 +ml3a1 +mm3a1)gc1

+(ml2l2 +ml3a2 +mm3a2)gc12 +ml3l3gc123 = τ1

(40)

{Il2 + Il3 + kr2Im2 + Im3 +mm3a
2
2c2 +ml2(a

2
2 + a1a2c2) +ml3(a

2
2 + l23

+a1a2c2 + a1l3c23 + 2a2l3c3)}q
′′
1 + {Il2 + Il3 + k2r2Im2 +mm3a

2
2 +ml2a

2
2

+ml3(a
2
2 + l23 + 2a2l3c3)}q

′′
2 + {Il3 + kr3Im3 +ml3(l

2
3 + a2l3c3)}q

′′
3

+{ml2a1l2s2 +ml3a1a2s2 +ml3a1l3s23}q
′2
1 − 2(ml3a2l3s3)q

′
1q

′
3 − 2(ml3a2

l3s3)q
′
2q

′
3 − (ml3a2l3s3)q

′2
3 + (ml2l2 +ml3a2 +mm3a2)gc12 +ml3l3gc123 = τ2

(41)

{Il3 + kr3Im3 +ml3(l
2
3 + a1l3c23 + a2l3c3)}q

′′
1 + {Il3 + kr3Im3 +ml3(l

2
3

+a2l3c3)}q
′′
2 + {Il3 + k2r3Im3 +ml3l

2
3}q

′′
3 + {ml3a1l3s23 +ml3a2l3s3}q

′2
1

+2(ml3a2l3s3)q
′
1q

′
2 + (ml3a2l3s3)q

′2
2 − (ml3a2l3s3)q

′
2q

′
3 +ml3l3gc123 = τ3

(42)

where l1 = l2 = l3 = 0.5 m represent the distances of the centers of masses of
the three links from the respective joint axes, a1 = a2 = a3 = 1.0 m represent
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the length of the three links, ml1 = ml2 = ml3 = 10 Kg are the masses of
the three links, mm1 = mm2 = mm3 = 1 Kg are the masses of the rotors,
Il1 = Il2 = Il3 = 1.0 Kg.m2 are the moments of inertia of links and Im1 =
Im2 = Im3 = 0.01Kg.m2 are the moments of inertia of rotors. The cosines and
sines of the joint angles are represented as:

c1 = cos q1 c12 = cos(q1 + q2) c123 = cos(q1 + q2 + q3)
s1 = sin q1 s12 = sin(q1 + q2) s123 = sin(q1 + q2 + q3).

(43)

5.1. Tracking control of high speed trajectory

The desired trajectory, is assigned to the three joints of the robot arm and is
given as:

qd(t) = 1.5 {1 − cos(1.5 π t) + sin(1.5 π t)} . (44)

The initial posture of manipulator is assumed to be at q(0) = [π π π]T rad.

In order to check the robustness of the proposed controller (ANFIS-PIDCSMC),
large severe uncertainties are simulated representing:

1. A step disturbance torque of 500N.m, which is suddenly applied at the
three joints at t = 1.5 sec., and is shown in Fig. 4.

2. An unpredicted variation at the mass and inertia of the third link of the
robot occurs at t = 1.5 sec. The abrupt change of the mass ml3 and the
inertia Il3 is shown in Fig. 5.

3. The nonlinear dynamic effects as viscous and static frictions are given by:

F
d
q′ =





5 q′
1

5 q′
2

5 q′
3



 , F
s
(q′) =





5sign(q′
1
)

5sign(q′
2
)

5sign(q′
3
)



 ,

τd =





500 + 500 sin(2t) + 500 cos(π2 t)
500 + 500 sin(2t) + 500 cos(π2 t)
500 + 500 sin(2t) + 500 cos(π2 t)



 . (45)

4. Also, the normally distributed noise affects the robot as disturbing torque
acting on the three joints, as it is shown in Fig. 6.

The parameters of the standalone conventional PID controller are set as:
(K)PID = diag {22000, 10000, 20000}. The parameters of the TSMC are set as:
the hitting control gain Kr = diag {12000, 12000, 12000} and the slope of the
sliding surface is λ = diag {3.5, 3.5, 3.5}. For the PIDSMC-SSDCPI controller,
the relay gain ks, the proportional gain kp, PID, the integral gain ki, PID and
the derivative gain kd,PID are set to satisfy the stability conditions in Eq. (29).
The proportional gain is set as: kp, PID = 72000, the integral gain is set as:
ki, PID = 75000, the derivative gain is set as: kd,PID = 50000, and ks = 5500.
The sliding surface parameters are set as: Kd = I3×3, Kp = diag{10, 10, 10}
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Figure 4. External disturbance torque (N. m)

Figure 5. (a) Mass of link 3, (b) Moment of inertia of link 3. Variations of
physical parameters of the third link
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Figure 6. Normally distributed noise acting on the three joints

and Ki = diag{25, 25, 25}.

The training data set for the ANFIS controller is derived by performing
computer simulations using the PIDSMC-SSDCPI controller as shown in Fig.
7, representing the block diagram simulated on the computer using the Simulink
software library of the MATLAB programming language. The collected data is
then used to train the ANFIS controller.

Figures 8, 9 and 10 show the positions of the three joints, 1, 2 and 3,
respectively. The tracking position error profiles for joints 1, 2, and 3 are
depicted in Figures 11, 12 and 13, respectively. It can be observed on the
basis of these results that the ANFIS-PIDCSMC gives smaller tracking error,
fast error convergence and better tracking performance than TSMC and PID
controllers. It is seen that not only are there no chattering phenomena but also
good robust trajectory tracking can be obtained in the conditions of parameter
variations and external disturbance.

The time history of the sliding surface s(t) is depicted in Figs. 14, 15
and 16 for the three joints 1, 2 and 3, respectively. The reaching phase, in
which s(t) 6= 0, exists up to 0.15 sec., which means that the reaching time is
0.15 sec. The sliding mode, in which s(t) = 0, starts at 0.15 sec., where the
error signal arrives at the sliding surface. Figures 17, 18 and 19 depict the
total control signal of the all types of the used controllers for joint 1, joint 2
and joint 3, respectively.
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Table 1 further on shows that the proposed approach has smaller error values
than TSMC and PID controllers. The performance indices were calculated for
each of the competing controllers for each joint as:

Figure 7. Simulated control system used to obtain the training data set for the
ANFIS control term in ANFIS-PIDCSMC controller

Figure 8. Position trajectory of joint 1
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2

Figure 9. Position trajectory of joint 2

Figure 10. Position trajectory of joint 3

Figure 11. Position error of joint 1

Integral of absolute error:

IAE =

∫

|e(t)| dt. (46)
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Figure 12. Position error of joint 2

Figure 13. Position error of joint 3

Figure 14. Trajectory of sliding surface for joint 1

Integral of time multiplied absolute error:

ITAE =

∫

t |e(t)| dt. (47)
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Figure 15. Trajectory of sliding surface for joint 2

Figure 16. Trajectory of sliding surface for joint 3

Figure 17. The total control signal of the all types of the used controllers for
joint 1

The conclusion is that for our proposed approach both (IAE) and (ITAE),
for the three joints, are considerably reduced in magnitude with regard to the
other conventional methods referred to in this study.

Comparison between the trajectory tracking position errors obtained by the
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Figure 18. The total control signal of the all types of the used controllers for
joint 2

Figure 19. The total control signal of the all types of the used controllers for
joint 3

Table 1. Performance comparison of the controllers

Algorithm
IAE ITAE

Joint

1

Joint

2

Joint

3

Joint

1

Joint

2

Joint

3

PID 40.44 39.14 40.07 95.02 97.46 95.24
TSMC 29.98 31.12 30.27 41.77 42.87 40.21
PIDSMC-

SSDCPI

15.12 14.87 15.79 39.95 38.40 37.43

ANFIS-

PIDCSMC

6.49 7.25 5.27 26.98 24.50 25.42

proposed ANFIS-PIDCSMC controller and the tracking errors of the TSMC and
PID controllers demonstrates that the ANFIS-PIDCSMC controller can achieve
favorable and satisfying trajectory tracking control performance. Also, com-
parison results show that the proposed ANFIS-PIDCSMC control methodology
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is able to control perfectly rigid robot manipulators and has excellent robust-
ness performance, even when the closed-loop robot control system is subject to
external disturbances and uncertainties.

5.2. Pick-in-place task

The desired joint angle function is chosen as:

qd(t) = 2 + (−1 + tanh(10 cos(0.25 t))). (48)

This function corresponds to the pick-in-place type task that is widely used
in industrial applications. The desired trajectory is shown in Fig. 20. The
uncertainty, external disturbance and the parameter variations are all applied
at t = 4.0 sec.

Figure 20. Desired trajectory for the pick-in-place task

Figures 21, 22 and 23 show the position of the three joints 1, 2 and 3, re-
spectively. The tracking position error profiles for joints 1, 2, and 3 are depicted
in Figs. 24, 25 and 26, respectively. Simulation results show that the proposed
approach achieves better tracking response, faster rise time, faster settling time,
less overshoot and lack of the steady state error, when compared to the tradi-
tional controllers, TSMC and PID. The values of different errors considered are
provided in Table 2.

6. Conclusions

The present paper has described the development of an ANFIS-PIDCSMC con-
trol strategy. In the first design phase, a hybrid control scheme is developed,
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Figure 21. Position of joint 1 in the pick and place task

Figure 22. Position of joint 2 in the pick and place task

Figure 23. Position of joint 3 in the pick and place task

in which PIDSMC-SSDCPI controller is designed in such a way that the equiv-
alent control term of the TSMC is replaced by PID controller with feedback
relay control action (Jakarov, Parlakçi and Istefanopoulos, 2005) and the dis-
continuous control signal of the TSMC is replaced by the SSDCPI control action
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Figure 24. Position error of joint 1 in the pick and place task

Figure 25. Position error of joint 2 in the pick and place task

Figure 26. Position error of joint 3 in the pick- place task

(Zeinali and Notash, 2010). The overall closed-loop control system guarantees
the global asymptotic stability of the closed-loop control system in terms of
Lyapunov quadratic form.

In the second design stage, an ANFIS-PIDCSMC controller is introduced
to increase the control system robustness against un-modeled dynamics (un-
structured uncertainty), physical parameters variation (structured uncertainty)
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Table 2. Performance comparison of the controllers for the pick and place task

Algorithm
IAE × 103 ITAE × 103

Joint 1 Joint 2 Joint 3 Joint 1 Joint 2 Joint 3

PID 2.0733 2.063 2.0547 11.087 10.947 10.782
TSMC 1.31 1.2352 1.3853 6.8272 6.728 8.296
PIDSMC-

SSDCPI

0.4761 0.4579 0.4756 0.5369 0.5305 0.5221

ANFIS-

PIDCSMC

0.3485 0.3485 0.3482 0.2261 0.2216 0.2159

and external disturbances. In designing the ANFIS-PIDCSMC controller, the
PI control action in the PIDSMC-SSDCPI controller is replaced by an ANFIS
control signal (Alavandar and Nigam, 2009c) such that the advantages of both
artificial neural networks (ANNs) and fuzzy logic controllers (FLCs) have been
utilized simultaneously.

For the proposed control algorithm, numerical simulations using the dynamic
model of RRM with uncertainties and external disturbances show the excellent
and effective performance of the adopted control approach in high-speed tra-
jectory tracking control problems. The simulation results, compared with the
results obtained with traditional controllers (standalone PID and TSMC), illus-
trate the fact that the tracking control behavior of the robot system displays
better tracking performance than that of the conventional controllers.
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