Identyfikatory
Warianty tytułu
Modeling of power SiC bipolar transistors in PSPICE
Języki publikacji
Abstrakty
Artykuł dotyczy problematyki modelowania bipolarnych tranzystorów mocy, wykonanych z węglika krzemu, w programie PSPICE. Przedstawiono wyniki eksperymentalnej weryfikacji dokładności symulacji wyjściowych charakterystyk statycznych tranzystora BT1206AC firmy TranSiC oraz tranzystora 2N7635-GA firmy GeneSiC, wykonanych z węglika krzemu, z wykorzystaniem modelu tranzystora bipolarnego, wbudowanego w program PSPICE.
This paper deals with the problem of modeling bipolar power transistors made of silicon carbide in PSPICE. The accuracy of built-in PSPICE model of a bipolar transistor was verified experimentally for two silicon carbide power transistors: BT1206AC (produced by TranSiC) and the 2N7635-GA (produced by GeneSiC) The results of simulations and measurements of the output static characteristics of the considered devices are given as well.
Czasopismo
Rocznik
Tom
Strony
168--176
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Akademia Morska w Gdyni
Bibliografia
- 1. Andersson M., Haraldsson O., A Silicon Carbide Inverter for a Hybrid Vehicle Application, Master Thesis, Lund University Dept. of Industrial Electrical Engineering and Automation, Lund 2007.
- 2. Balachandran S., Chow T.P., Agarwal A., Tipton W., Scozzie S., Gummel-Poon model for 1.8 kV SiC high-voltage bipolar junction transistor, Power Electronics Specialists Conference, PESC 04. 2004, IEEE 35th Annual, Vol.4, 2004, s. 2994–2998.
- 3. Bisewski D., Modelowanie tranzystora MESFET w programie SPICE z uwzględnieniem samonagrzewania, praca doktorska, Akademia Morska w Gdyni, Gdynia 2012.
- 4. Buono B., Ghandi R., Domeij M., Malm B.G., Modeling and Characterization of the on-Resistance in 4H-SiC Power BJTs, IEEE Transactions on Electron Devices, Vol. 58, 2011, No. 7, s. 2081–2087.
- 5. Buono B., Ghandi R., Domeij M., Malm B.G., Zetterling C-M., Ostling M., Modeling and Characterization of Current Gain Versus Temperature in 4H-SiC Power BJTs, IEEE Transactions on Electron Devices, Vol. 57, 2010, No. 3, s. 704–711.
- 6. Cressler J.D., Mantooth H.A., Extreme Environment Electronics, CRC Press, Boca Raton, Florida, USA, 2012.
- 7. Cui Y., Chinthavali M.S., Xu F., Tolbert L.M., Characterization and Modeling of Silicon Carbide Power Devices and Paralleling Operation, IEEE International Symposium on Industrial Electronics (ISIE), Hangzhou, China, 2012.
- 8. Domeij M., Lee H-S., Zetterling C-M., Ostling M., Schoner A., SiC power bipolar junction transistors – modeling and improvement of the current gain, European Conference on Power Electronics and Applications, Dresden 2005.
- 9. Gao Y., Huang A.Q., Agarwal A.K., Krishnaswami S., Characterization and modeling of 4H-SiC power BJTs, Industrial Electronics Society, 31st Annual Conference of IEEE, Sheraton Capital Center Raleigh, NC, USA, 2005.
- 10. Górecki P., Nowoczesne tranzystory mocy, czyli długa droga do SiC i GaN, „Elektronika Praktyczna”, 2014, nr 3, s. 46–61.
- 11. Huang Y., Cheng S., Zhou W., Sheng K., Modeling of a 1200 V 6 a SiC bipolar junction transistor, Energy Conversion Congress and Exposition (ECCE), Colorado Convention Center, Denver, CO, USA, 2013, s. 934–939.
- 12. Lanni L., Silicon Carbide Bipolar Integrated Circuits for High Temperature Applications, Licentiate Thesis, School of Information and Communication Technology (ICT), KTH, Royal Institute of Technology, Stockholm 2012.
- 13. Materiały firmy Fairchild Semiconductor.
- 14. Seyezhai R., Modeling and Simulation of Silicon Carbide (SiC) Based Bipolar Junction Transistor, International Journal of Engineering Research and Applications (IJERA), Vol. 1, November 2011, No. 4, s.1652–1657.
- 15. Singh R.,Jeliazkov S., Lieser E., 1200 V – class 4H-SiC “Super” Junction Transistors with Current Gains of 88 and Ultra-fast Switching capability, Materials Science Forum, Vol. 717–720, 2012, s. 1127–1130.
- 16. Wei L., Electro-Thermal Simulations and Measurements of Silicon Carbide Power Transistors, Doctoral Thesis, Laboratory of Solid State Devices (SSD), Department of Microelectronics and Information Technology (IMIT), Royal Institute of Technology (KTH), Stockholm 2004.
- 17. Zarębski J., Bisewski D., Dąbrowski J., Górecki K., Bargieł K., Patrzyk J., Przyrządy półprzewodnikowe z węglika krzemu – pomiary, modelowanie i aplikacje, „Elektronika”, Vol. 55, 2014, nr 8.
- 18. Zhang Q., Zhang Y., Wang Y., Modeling of current gain versus recombination in double base epilayer 4H-SiC BJTs, Electron Devices and Solid-State Circuits (EDSSC), IEEE International Conference, Hong Kong 2010, s. 1–3. Źródła internetowe
- 19. http://www.genesicsemi.com.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6bcd6313-40a0-4ec7-a9e7-25dd6849300f