PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The comparative study of influence of lactic and glycolic acids copolymers type on properties of daunorubicin loaded nanoparticles and drug release

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to compare the physico-chemical and biological properties of polymeric nanoparticles obtained from poly(DL-lactide-co-glycolide) (PLGA) with different ratios of monomers loaded with daunorubicin (DNR). Methods: DNR-loaded nanoparticles (NPs) were prepared with use of modified simultaneous double-emulsion solvent evaporation/diffusion technique. NPs were characterized using dynamic light scattering, atomic force microscopy, transmission electron microscopy, scanning electron microscopy, and differential scanning calorimetry and Fourier transform infrared spectroscopy. Results: NPs with DNR were differing in size and zeta potential, depending on the type of polymer. The data obtained show that total content of DNR correlates with the values of the binding constant of DNR with polymers. The release of DNR from NPs proceeds predominantly for polymers with lower binding constants. The in vitro study of NPs on the MCF-7 cells showed similar activity of particles and substances while for the anthracycline-resistant MCF-7Adr cells the cytotoxicity of the nanoparticles was 3 to 7 times higher depending on the type of copolymer. Conclusions: PLGA DNR-loaded nanoparticles can be used to overcome multidrug resistance (MDR) as well as for reducing the frequency of DNR reception due to the prolonged effect, which allows maintaining the concentration of the drug at the required level. The usefulness of binding constant calculations for obtaining nanoparticles with the maximum drug loading was proven. The rate of drug administration and the frequency of administration can be calculated based on the DNR release profiles and release parameters that depend on polymer type.
Rocznik
Strony
65--77
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Moscow Technological University, Moscow, Russian Federation
  • Russian Research Center for Molecular Diagnostics and Therapy, Moscow, Russian Federation
autor
  • Moscow Technological University, Moscow, Russian Federation
  • Russian Research Center for Molecular Diagnostics and Therapy, Moscow, Russian Federation
autor
  • Moscow Technological University, Moscow, Russian Federation
  • Russian Research Center for Molecular Diagnostics and Therapy, Moscow, Russian Federation
autor
  • Russian Research Center for Molecular Diagnostics and Therapy, Moscow, Russian Federation
autor
  • Moscow Technological University, Moscow, Russian Federation
  • Russian Research Center for Molecular Diagnostics and Therapy, Moscow, Russian Federation
autor
  • Russian Research Center for Molecular Diagnostics and Therapy, Moscow, Russian Federation
  • Russian Research Center for Molecular Diagnostics and Therapy, Moscow, Russian Federation
autor
  • Moscow Technological University, Moscow, Russian Federation
  • Russian Research Center for Molecular Diagnostics and Therapy, Moscow, Russian Federation
autor
  • Russian Research Center for Molecular Diagnostics and Therapy, Moscow, Russian Federation
Bibliografia
  • [1] BOHREY S., CHOURASIYA V., PANDEY A., Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study, Nano Convergence, 2016, 3(1), 3.
  • [2] CAPRIOLA A., Determining an Equilibrium Constant Using Spectrophotometry, Saint Joseph’s University, 2012.
  • [3] COHENA Y., ISH-SHALOM S., SEGAL E., NUDELMAN O., SHPIGELMAN A., LIVNEY Y., The bioavailability of vitamin D3, a model hydrophobic nutraceutical, in casein micelles, as model protein nanoparticles: human clinical trial results, J. Func. Foods, 2017, 30, 321–325.
  • [4] DUAN J.Z., RIVIERE K., MARROUM P., In vivo bioequivalence and in vitro similarity factor (f2) for dissolution profile comparisons of extended release formulations: how and when do they match?, Pharm. Res., 2011, 28(5), 1144–1156.
  • [5] GAO N., YANG W., NIE H., GONG Y., JING J., GAO L., ZHANG X., Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery, Biosens. Bioelectron., 2017, 96, 300–307.
  • [6] GUIMARAES P.P.G., OLIVEIRAA M.F., GOMES A.D.M., GONTIJO S.M.L., CORTES M.E., CAMPOS P.P., VIANA C.T.R., ANDRADE S.P., SINISTERRAA R.D., PLGA nanofibers improves the antitumoral effect of daunorubicin, Colloids Surf B Biointerfaces, 2015, 136, 248–255.
  • [7] GUKASOVA N.V., ZHUNINA O.A., NIKOLSKAYA E.D., POMAZKOV A.V., SAPELKIN M.A., SEVERIN E.S., TERESHCHENKO O.G., YABBAROV N.G., FIPS 2016118302/ 15(028761) of 21.03.2017.
  • [8] GUO M., CHU Z., YAO J., WANG Y., WANG L., FAN Y., The effects of tensile stress on degradation of biodegradable PLGA membranes: A quantitative study, Polym. Degrad. Stabil., 2016, 124, 95–100.
  • [9] HAJAVI J., SANKIAN M., VARASTECH A.-R., HASHEMI M., Synthesis Strategies for Optimizing Sizes of PLGA Nanoparticles Containing Recombinant Chenopodium Album (rChe a 3) Allergen, Int. J. Polym. Mater Po., 2017, 66(12), 603–608.
  • [10] KAITY S., GHOSH A., Facile preparation of acrylamide grafted locust bean gum-poly(vinyl alcohol) interpenetrating polymer network microspheres for controlled oral drug delivery, J. Drug. Deliv. Sci. Tec., 2016, 33, 1–12.
  • [11] KAMALY N., YAMEEN B., WU J., FAROKHZAD O.C., Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release, Chem. Rev., 2016, 116(4), 2602–2663.
  • [12] KAMBUROW M., SIMEONOVA M., Daunorubicin-loaded chitosan microparticles – preparation and physicochemical characterization, J. Chem. Technol. Metal., 2016, 51(1), 39–46.
  • [13] KORSMEYER R., GURNY R., DOELKER E., BURI P., PEPPAS N., Mechanisms of solute release from porous hydrophilic polymers, Int. J. Pharmaceut., 1983, 15(1), 25–35.
  • [14] LAVRIK O.I., Physical Chemistry of Polymers, Novosibirsk, 2014.
  • [15] LIU J., QIU Z., WANG S., ZHOU L., ZHANG S.A., Modified double-emulsion method for the preparation of daunorubicin-loaded polymeric nanoparticle with enhanced in vitro anti-tumor activity, Biomed. Mat., 2010, 5, 1–10.
  • [16] MOHADDESEH M., SABER S., BAHRAINIAN R., DINARVAND F., Targeted drug delivery of Sunitinib Malate to tumor blood vessels by cRGD-chiotosan-gold nanoparticles, Int. J. Pharmaceut., 2017, 517(1–2), 269–278.
  • [17] MOSSMAN T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Meth., 1983, 65(1–2), 55–63.
  • [18] NAGDA C., CHOTAI N.P., PATEL U., PATEL S., SONI T., PATEL P., HINGORANI L., Mathematical evaluation of similarity factor using various weighing approaches on aceclofenac marketed formulations by model-independent method, Die Pharmazie, 2008, 63(1), 31–34.
  • [19] PARHIZKAR M., REARDON P.J.T., KNOWLES J.C., BROWNING R.J., STRIDE E., BARBARA P.R., HARKER A.H., Electrohydrodynamic encapsulation of cisplatin in poly(lactic-co-glycolic acid) nanoparticles for controlled drug delivery, Nanomedicine: NBM, 2016, 12(7), 1919–1929.
  • [20] PAWAR H., WANKHADE S.R., YADAV D.K., SURES S., Development and evaluation of co-formulated docetaxel and curcumin biodegradable nanoparticles for parenteral administration, Pharm. Dev. Technol., 2016, 21(6), 725–736.
  • [21] PEPPAS N.A., Analysis of Fickian and non-Fickian drug release from polymers, Pharm. Acta Helv., 1985, 60(4), 110–111.
  • [22] PIMPLE S., MANJAPPA A.S., UKAWALA M., PLGA nanoparticles loaded with etoposide and quercetin dihydrate individually: in vitro cell line study to ensure advantage of combination therapy, Cancer Nanotechnol., 2012, 3(1), 25.
  • [23] POSADOWSKA U., BRZYCHCZY-WLOCH M., PAMULA E. Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment, Acta Bioeng. Biomech., 2015, 17(3), 41–48.
  • [24] RAHIMI M., MOBEDI H., BEHNAMGHADER A., In situ-forming, PLGA implants loaded with leuprolide acetate/β-cyclodextrin complexes: mathematical modelling and degradation, J. Microencapsul., 2016, 33(4), 355–364.
  • [25] SAHOOO S., CHAKRABORTI C.K., BEHERA P.K., Development and evaluation of gastroretentive controlled release polymeric suspensions containing ciprofloxacin and carbopol polymers, J. Chem. Pharm. Res., 2012, 4(4), 2268–2284.
  • [26] SHARMA D., MAHESHWARI D., PHILIP G., RANA R., BHATIA S., SINGH M., GABRANI R., SHARMA S.K., ALI J., Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: in vitro and in vivo evaluation, BioMed Res. Int., 2014, 3, 1–15.
  • [27] SUN S.B., LIU P., SHAO F.M., MIAO Q.L., Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer, Int. J. Clin. Exp. Med., 2015, 8(10), 1967–1981.
  • [28] TATA D.B., HAHN G., DUNN F., Ultrasonic absorption frequency dependence of two widely used anti-cancer drugs: doxorubicin and daunorubicin, Ultrasonics, 1993, 31(6), 447–450.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6bcbfda9-0710-4d72-8136-ba5f12743082
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.