PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Krylov solvability under perturbations of abstract inverse linear problems

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
When a solution to an abstract inverse linear problem on Hilbert space is approximable by finite linear combinations of vectors from the cyclic subspace associated with the datum and with the linear operator of the problem, the solution is said to be a Krylov solution. Krylov solvability of the inverse problem allows for solution approximations that, in applications, correspond to the very efficient and popular Krylov subspace methods. We study the possible behaviors of persistence, gain, or loss of Krylov solvability under suitable small perturbations of the infinite-dimensional inverse problem - the underlying motivations being the stability or instability of infinite-dimensional Krylov methods under small noise or uncertainties, as well as the possibility to decide a priori whether an infinite-dimensional inverse problem is Krylov solvable by investigating a potentially easier, perturbed problem.
Wydawca
Rocznik
Strony
3--29
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
  • Mathematical Institute in Opava, Silesian University in Opava, Na Rybníčku 626/1, CZ-746 01 Opava, Czech Republic
  • Institute for Applied Mathematics and Hausdorff Center for Mathematics, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany
Bibliografia
  • [1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Frederick Ungar, New York, 1993.
  • [2] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.
  • [3] J.-F. Carpraux, S. K. Godunov and S. V. Kuznetsov, Condition number of the Krylov bases and subspaces, Linear Algebra Appl. 248 (1996), 137-160.
  • [4] N. A. Caruso and A. Michelangeli, Krylov solvability of unbounded inverse linear problems, Integral Equations Operator Theory 93 (2021), no. 1, Paper No. 1.
  • [5] N. A. Caruso and A. Michelangeli, Convergence of the conjugate gradient method with unbounded operators, Oper. Matrices 16 (2022), no. 1, 35-68.
  • [6] N. A. Caruso, A. Michelangeli and P. Novati, On Krylov solutions to infinite-dimensional inverse linear problems, Calcolo 56 (2019), no. 3, Paper No. 32.
  • [7] N. A. Caruso, A. Michelangeli and P. Novati, On general convergence behaviours of finite-dimensional approximants for abstract linear inverse problems, Asymptot. Anal. 127 (2022), no. 1-2, 167-189.
  • [8] J. W. Daniel, The conjugate gradient method for linear and nonlinear operator equations, SIAM J. Numer. Anal. 4 (1967), 10-26.
  • [9] X. Du, M. Sarkis, C. E. Schaerer and D. B. Szyld, Inexact and truncated parareal-in-time Krylov subspace methods for parabolic optimal control problems, Electron. Trans. Numer. Anal. 40 (2013), 36-57.
  • [10] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer, New York, 2004.
  • [11] L. Gehér, Cyclic vectors of a cyclic operator span the space, Proc. Amer. Math. Soc. 33 (1972), 109-110.
  • [12] M. A. Gilles and A. Townsend, Continuous analogues of Krylov subspace methods for differential operators, SIAM J. Numer. Anal. 57 (2019), no. 2, 899-924.
  • [13] I. C. Gohberg and A. S. Markus, Two theorems on the gap between subspaces of a Banach space, Uspekhi Mat. Nauk 14 (1959), no. 5(89), 135-140.
  • [14] A. K. Gupta and S. Mukherjee, On Hausdorff metric spaces, preprint (2019), https://arxiv.org/abs/1909.07195v3.
  • [15] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Encyclopedia Math. Appl. 17, Springer, New York, 1982.
  • [16] M. Hanke, Conjugate Gradient Type Methods for Ill-Posed Problems, Pitman Res. Notes Math. Ser. 327, Longman Scientific & Technical, Harlow, 1995.
  • [17] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM Monogr. Math. Model. Comput., Society for Industrial and Applied Mathematics, Philadelphia, 1998.
  • [18] J. Henrikson, Completeness and total boundedness of the Hausdorff metric, MIT Undergrad J. Math. 1 (1999), 69-80.
  • [19] D. A. Herrero, Eigenvectors and cyclic vectors for bilateral weighted shifts, Rev. Un. Mat. Argentina 26 (1972/73), 24-41.
  • [20] R. Herzog and E. Sachs, Superlinear convergence of Krylov subspace methods for self-adjoint problems in Hilbert space, SIAM J. Numer. Anal. 53 (2015), no. 3, 1304-1324.
  • [21] W. J. Kammerer and M. Z. Nashed, On the convergence of the conjugate gradient method for singular linear operator equations, SIAM J. Numer. Anal. 9 (1972), 165-181.
  • [22] W. Karush, Convergence of a method of solving linear problems, Proc. Amer. Math. Soc. 3 (1952), 839-851.
  • [23] T. Kato, Perturbation Theory for Linear Operators, Class. Math., Springer, Berlin, 1995.
  • [24] M. G. Kreĭn and M. A. Krasnosel’skiĭ, Fundamental theorems on the extension of Hermitian operators and certain of their applications to the theory of orthogonal polynomials and the problem of moments, Uspehi Matem. Nauk (N. S.) 2 (1947), no. 3(19), 60-106.
  • [25] M. G. Kreĭ, M. A. Krasnosel’skiĭ and D. Mil’man, Concerning the deficiency numbers of linear operators in Banach space and some geometric questions, Sbornik Trudov Instit. Mat. Akad. Nauk. Ukr. S.S.R. 11 (1948), 97-112.
  • [26] S. V. Kuznetsov, Perturbation bounds of the Krylov bases and associated Hessenberg forms, Linear Algebra Appl. 265 (1997), 1-28.
  • [27] J. Liesen and Z. Strakoš, Krylov Subspace Methods, Numer. Math. Sci. Comput., Oxford University, Oxford, 2013.
  • [28] J. R. Munkres, Topology, Prentice Hall, Upper Saddle River, 2000.
  • [29] A. S. Nemirovskiy and B. T. Polyak, Iterative methods for solving linear ill-posed problems under precise information. I, Izv. Akad. Nauk SSSR Tekhn. Kibernet. (1984), no. 2, 13-25, 203.
  • [30] A. S. Nemirovskiy and B. T. Polyak, Iterative methods for solving linear ill-posed problems under precise information. II, Eng. Cybernetics 22 (1984), 50-57.
  • [31] S. Olver, GMRES for the differentiation operator, SIAM J. Numer. Anal. 47 (2009), no. 5, 3359-3373.
  • [32] C. C. Paige and P. Van Dooren, Sensitivity analysis of the Lanczos reduction, Numer. Linear Algebra Appl. 6 (1999), 29-50.
  • [33] A. Quarteroni, Numerical Models for Differential Problems, 3rd ed., MS&A. Model. Simul. Appl. 16, Springer, Cham, 2017.
  • [34] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, 2003.
  • [35] S. Shkarin, A weighted bilateral shift with cyclic square is supercyclic, Bull. Lond. Math. Soc. 39 (2007), no. 6, 1029-1038.
  • [36] J. A. Sifuentes, M. Embree and R. B. Morgan, GMRES convergence for perturbed coefficient matrices, with application to approximate deflation preconditioning, SIAM J. Matrix Anal. Appl. 34 (2013), no. 3, 1066-1088.
  • [37] V. Simoncini and D. B. Szyld, Theory of inexact Krylov subspace methods and applications to scientific computing, SIAM J. Sci. Comput. 25 (2003), no. 2, 454-477.
  • [38] V. Simoncini and D. B. Szyld, On the occurrence of superlinear convergence of exact and inexact Krylov subspace methods, SIAM Rev. 47 (2005), no. 2, 247-272.
  • [39] A. A. Tuzhilin, Lectures on Hausdorff and Gromov-Hausdorff distance geometry, arXiv:2012.00756, preprint (2020), https://arxiv.org/abs/2012.00756.
  • [40] J. van den Eshof, G. L. G. Sleijpen and M. B. van Gijzen, Relaxation strategies for nested Krylov methods, J. Comput. Appl. Math. 177 (2005), no. 2, 347-365.
  • [41] R. Winther, Some superlinear convergence results for the conjugate gradient method, SIAM J. Numer. Anal. 17 (1980), no. 1, 14-17.
  • [42] F. Xue and H. C. Elman, Fast inexact subspace iteration for generalized eigenvalue problems with spectral transformation, Linear Algebra Appl. 435 (2011), no. 3, 601-622.
  • [43] J.-P. M. Zemke, Abstract perturbed Krylov methods, Linear Algebra Appl. 424 (2007), no. 2-3, 405-434.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6bca7b16-2294-4d3a-8ff7-49d48a999687
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.