Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Basing on the consistent couple stress theory (CCST), we develop a unified size-dependent shear deformation theory to analyze the free vibration characteristics of simply supported, porous functionally graded (FG) piezoelectric microplates which resting on the Winkler-Pasternak foundation are subjected to electric voltages. Various CCST-based shear deformation theories can be reproduced by incorporating their corresponding shape functions, which characterize the through-thickness distributions of the shear deformations, into the unified size-dependent theory. The reproduced CCST-based plate theories include the classical plate theory (CPT), the first-order shear deformation plate theory (SDPT), Reddy’s refined SDPT, the sinusoidal SDPT, the exponential SDPT, and the hyperbolic SDPT. The unified size-dependent theory is subsequently used to determine the natural frequencies of simply supported, porous FG piezoelectric microplates and their corresponding vibration mode shapes. The effects of the material length scale parameter, the length-to-thickness ratio, the material-property gradient index, different values of the applied voltages, the porosity parameter, different porosity distribution patterns, the Winkler spring coefficient, and the shear modulus of the surrounding medium on the natural frequencies of the porous FG piezoelectric microplates are examined and appear to be significant.
Czasopismo
Rocznik
Tom
Strony
463--511
Opis fizyczny
Bibliogr. 64 poz., tab., wykr.
Twórcy
autor
- Department of Civil Engineering, National Cheng Kung University, Tainan 10701, Taiwan
autor
- Department of Civil Engineering, National Cheng Kung University, Tainan 10701, Taiwan
Bibliografia
- 1. H.F. Tiersten, Linear Piezoelectric Plate Vibrations, Plenum Press, New York, 1969.
- 2. S. Kapuria, P. Kumari, J.K. Nath, Efficient modeling of smart piezoelectric composite laminates: a review, Acta Mechanica, 214, 31–48, 2010.
- 3. G.M. Kulikov, S.V. Plotnikova, Assessment of the sampling surfaces formulation for thermoelectroelastic analysis of layered and functionally graded piezoelectric shells, Mechanics of Advanced Materials and Structures, 24, 392–409, 2017.
- 4. D.A. Saravanos, P.R. Heyliger, Mechanics and computational models for laminated piezoelectric beams, plates, and shells, Applied Mechanics Reviews, 52, 305–320, 1999.
- 5. J.I. Wang, J. Yang, Higher-order theories of piezoelectric plates and applications, Applied Mechanics Reviews, 53, 87–99, 2000.
- 6. C.P. Wu, Y.C. Liu, A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells, Composite Structures, 147, 1–15, 2016.
- 7. C.P. Wu, K.H. Chiu, Y.M. Wang, A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells, CMC-Computers, Materials & Continua, 18, 93–132, 2008.
- 8. S.Q. Zhang, G.Z. Zhao, M.N. Rao, R. Schmidt, Y.J. Yu, A review on modelling techniques of piezoelectric integrated plates and shells, Journal of Intelligent Material Systems and Structures, 30, 1133–1147, 2019.
- 9. G. Piazza, P.J. Stephanou, A.P. Pisano, Piezoelectric, Aluminum Nitride vibrating contour-mode MEMs resonators, Journal of Microelectromechanical System, 15, 1406-1418, 2006.
- 10. G. Wingqvist, J. Bjurstrom, L. Liljeholm, V. Yantchev, I. Katardjiev, Shear mode AIN thin film electro-acoustic resonant sensor operation in viscous media, Sensors and Actuators B, 123, 466–473, 2007.
- 11. T. Manzaneque, V. Ruiz-Diez, J. Hernando-Garcia, E. Wistrela, M. Kucera, U. Schmid, J.L. Sanchez-Rojas, Piezoelectric MEMs resonator-based oscillator for density and viscosity sensing, Sensors and Actuators A: Physical, 220, 305–315, 2014.
- 12. R. Ardito, E. Bertarelli, A. Corigliano, G. Gafforelli, On the application of piezolaminated composites to diaphragm micropumps, Composite Structures, 99, 231–240, 2013.
- 13. D.N.C. Nam, K.K. Ahn, Design of an IPMC diaphragm for micropump application, Sensors and Actuators A: Physical, 187, 174–182, 2012.
- 14. O. Thoumine, A. Ott, O. Cardoso, J.J. Meister, Microplates: a new tool for manipulation and mechanical perturbation of individual cells, Journal of Biochemical and Biophysical Methods, 39, 47–62, 1999.
- 15. J. Qiu, H. Ji, The application of piezoelectric materials in smart structures in China, International Journal of Aeronautical and Space Science, 11, 266–284, 2010.
- 16. R.A. Toupin, Elastic materials with couple-stresses, Archive for Rational Mechanics and Analysis, 11, 385–414, 1962.
- 17. R.D. Mindlin, H.F. Tiersten, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, 11, 415–488, 1962.
- 18. W.T. Koiter, Couple stresses in the theory of elasticity, I and II, Philosophical Transactions of the Royal Society London B, 67, 17–44, 1964.
- 19. A.C. Eringen, Theory of Micropolar Elasticity, in: H. Liebowitz [Ed.], Fracture, Academic Press, New York, 1968.
- 20. F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress-based strain gradient theory for elasticity, International Journal of Solids and Structures, 39, 2731–2743, 2002.
- 21. B. Akgöz, Ö. Civalek, Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory, Materials & Design, 42, 164–171, 2012.
- 22. M. Mohammadi, M.F. Mahani, An analytical solution for buckling analysis of sizedependent rectangular micro-plates according to the modified strain gradient and couple stress theories, Acta Mechanica, 226, 3477–3493, 2015.
- 23. H.T. Thai, D.H. Choi, Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory, Composite Structures, 95, 142–153, 2013.
- 24. G.C. Tsiatas, A.J. Yiotis, Size effect on the static, dynamic and buckling analysis of orthotropic Kirchhoff-type skew micro-plates based on a modified couple stress theory: comparison with the nonlocal elasticity theory, Acta Mechanica, 226, 1267–1281, 2015.
- 25. J. Kim, K.K. Zur, J.N. Reddy, Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates, Composite Structures, 209, 879–888, 2019.
- 26. I. Shufrin, M. Eisenberger, Stability and vibration of shear deformable plates-first order and higher order analyses, International Journal of Solids and Structures, 42, 1225– 1251, 2005.
- 27. H.T. Thai, S.E. Kim, A size-dependent functionally graded Reddy plate model based on a modified couple stress theory, Composites Part B, 45, 1636–1645, 2013.
- 28. B. Akgöz, Ö. Civalek, A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory, Acta Mechanica, 226, 2277–2294, 2015.
- 29. Z.T. Beni, Y.T. Beni, Dynamic stability analysis of size-dependent viscoelastic/piezoelectric nanobeams, International Journal of Structural Stability and Dynamics, 22, 2250050, 2022.
- 30. Y.T. Beni, Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling, Mechanics Research Communications, 75, 67–80, 2016.
- 31. M. Jafari, E. Jomehzadeh, M. Rezaeizadeh, Length scale-dependent natural frequencies of piezoelectric microplates, Journal of Vibration and Control, 24, 2749–2759, 2018.
- 32. A. Kazemi, R. Vatankhah, M. Farid, Vibration analysis of size-dependent functionally graded micro-plates subjected to electrostatic and piezoelectric excitations, European Journal of Mechanics A/Solids, 76, 46–56, 2019.
- 33. B. Akgöz, Ö. Civalek, Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory, Meccanica, 48, 863–873, 2013.
- 34. Q.H. Pham, P.C. Nguyen, Dynamic stability analysis of porous functionally graded microplates using a refined isogeometric approach, Composite Structures, 284, 115086, 2022.
- 35. A. Ghobadi, Y.T. Beni, H. Golestanian, Size-dependent thermo-electro-mechanical nonlinear bending analysis of flexoelectric nano-plate in the presence of magnetic field, International Journal of Mechanical Sciences, 152, 118–137, 2019.
- 36. A. Ghobadi, H. Golestanian, Y.T. Beni, On the size-dependent nonlinear thermoelectro-mechanical free vibration analysis of functionally graded flexoelectric nanoplate, Communications in Nonlinear Science and Numerical Simulation, 95, 105585, 2021.
- 37. A.A. Dehkordi, R.J. Goojani, Y.T. Beni, Porous flexoelectric cylindrical nanoshell based on the non-classical continuum theory, Applied Physics A, 128, 478, 2022.
- 38. A. Ghobadi, Y.T. Beni, K.K. Zur, Porosity distribution effect on stress, electric field and nonlinear vibration of functionally graded nanostructures with direct and inverse flexoelectric phenomenon, Composite Structures, 259, 113220, 2021.
- 39. Q.H. Pham, T.T. Tran, V.K. Tran, P.C. Nguyen, T. Nguyen-Thoi, A.M. Zenkour, Bending and hygro-thermo-mechanical vibration analysis of a functionally graded porous sandwich nanoshell resting on elastic foundation, Mechanics of Advanced Materials and Structures, 2021, doi: 10.1080/15376494.2021.1968543.
- 40. Q.H. Pham, P.C. Nguyen, V.K. Tran, T. Nguyen-Thoi, Finite element analysis for functionally graded porous nano-plates resting on elastic foundation, Steel and Composite Structures, 41, 149–166, 2021.
- 41. Q.H. Pham, T.T. Tran, V.K. Tran, P.C. Nguyen, T. Nguyen-Thoi, Free vibration of functionally graded porous non-uniform thickness annular-nanoplates resting on elastic foundation using ES-MITC3 element, Alexandria Engineering Journal, 61, 1788–1802, 2022.
- 42. Q.H. Pham, P.C. Nguyen, T.T. Tran, Dynamic response of porous functionally graded sandwich nanoplates using nonlocal higher-order isogeometric analysis, Composite Structures, 290, 115565, 2022.
- 43. J. Lou, L. He, J. Du, H. Wu, Buckling and post-buckling analyses of piezoelectric hybrid microplates subjected to thermo-electro-mechanical loads based on the modified couple stress theory, Composite Structures, 153, 332–344, 2016.
- 44. M. Malikan, Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order deformation theory, Applied Mathematical Modelling, 48, 196–207, 2017.
- 45. F. Abbaspour, H. Arvin, Thermo-electro-mechanical buckling analysis of sandwich nanocomposite microplates reinforced with graphene platelets integrated with piezoelectric facesheets resting on elastic foundation, Computers & Mathematics with Applications, 101, 38–50, 2021.
- 46. H. Safarpour, Z.E. Hajilak, M. Habibi, A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures resting on elastic foundation, International Journal of Mechanics and Materials in Design, 15, 569–583, 2019.
- 47. Y.S. Li, E. Pan, Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory, International Journal of Engineering Science, 97, 40–59, 2015.
- 48. M.A. Abazid, M. Sobhy, Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory, Microsystem Technology, 24, 1227–1245, 2018.
- 49. N.V. Nguyen, J. Lee, On the static and dynamic responses of smart piezoelectric functionally graded graphene platelet-reinforced microplates, International Journal of Mechanical Sciences, 197, 106310, 2021.
- 50. I. Eshraghi, S. Dag, Transient dynamic analysis of functionally graded micro-beams considering small-scale effects, Archives of Mechanics, 73, 303–337, 2021.
- 51. A. Razeghi-Harikandeei, B. Azizollah Ganji, R.A. Jafari-Talookolaei, A. Abdipour, Static, free, and forced vibration analysis of a delaminated microbeam-based MEMS subjected to the electrostatic force, Archives of Mechanics, 72, 169–188, 2020.
- 52. I. Karimipour, Y.T. Beni, A.H. Akbarzadeh, Modified couple stress theory for threedimensional elasticity in curvilinear coordinate system: application to micro torus panels, Meccanica, 55, 2033–2073, 2020.
- 53. A.R. Hadjesfandiari, G.F. Dargush, Couple stress theory for solids, International Journal of Solids and Structures, 48, 2496–2510, 2011.
- 54. A.R. Hadjesfandiari, G.F. Dargush, Fundamental solutions for isotropic sizedependent couple stress elasticity, International Journal of Solids and Structures, 50, 1253–1265, 2013.
- 55. A.R. Hadjesfandiari, Size-dependent piezoelectricity, International Journal of Solids and Structures, 50, 2781–2791, 2013.
- 56. F. Abbaspour, H. Arvin, Vibration and thermal buckling analyses of three-layered centrosymmetric piezoelectric microplates based on the modified consistent couple stress theory, Journal of Vibration and Control, 26, 1253–1265, 2020.
- 57. H. Razavi, A.F. Babadi, Y.T. Beni, Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory, Composite Structures, 160, 1299–1309, 2017.
- 58. S. Zeng, B.L. Wang, K.F. Wang, Static stability analysis of nanoscale piezoelectric shells with flexoelectric effect based on couple stress theory, Microsystem Technology, 24, 2957–2967, 2018.
- 59. C.P. Wu, H.X. Hu, A unified size-dependent plate theory for static bending and free vibration analyses of micro- and nano-scale plates based on the consistent couple stress theory, Mechanics of Materials, 162, 104085, 2021.
- 60. Q. Wang, On buckling of column structures with a pair of piezoelectric layers, Engineering Structures, 24, 199–205, 2002.
- 61. Q. Wang, S.T. Quek, C.T. Sun, X. Liu, Analysis of piezoelectric coupled circular plate, Smart Materials and Structures, 10, 229–239, 2001.
- 62. M.R. Barati, H. Shahverdi, A.M. Zenkour, Electro-mechanical vibration of smart piezoelectric FG plates with porosities according to a refined four-variable theory, Mechanics of Advanced Materials and Structures, 24, 987–998, 2017.
- 63. A. Karamanli, M. Aydogdu, Vibration of functionally graded shear and normal deformable porous microplates via finite element method, Composite Structures, 237, 111934, 2020.
- 64. N. Shafiei, S.S. Mirjavadi, B.M. Afshari, S. Rabby, M. Kazemi, Vibration of twodimensional impact functionally graded (2D-FG) porous nano-/micro-beams, Computer Methods in Applied Mechanics and Engineering, 322, 615–632, 2017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6bc75809-944e-4eec-930a-f03b7ad36be7