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Basing on the consistent couple stress theory (CCST), we develop a unified
size-dependent shear deformation theory to analyze the free vibration characteristics
of simply supported, porous functionally graded (FG) piezoelectric microplates which
resting on the Winkler–Pasternak foundation are subjected to electric voltages. Vari-
ous CCST-based shear deformation theories can be reproduced by incorporating their
corresponding shape functions, which characterize the through-thickness distributions
of the shear deformations, into the unified size-dependent theory. The reproduced
CCST-based plate theories include the classical plate theory (CPT), the first-order
shear deformation plate theory (SDPT), Reddy’s refined SDPT, the sinusoidal SDPT,
the exponential SDPT, and the hyperbolic SDPT. The unified size-dependent the-
ory is subsequently used to determine the natural frequencies of simply supported,
porous FG piezoelectric microplates and their corresponding vibration mode shapes.
The effects of the material length scale parameter, the length-to-thickness ratio, the
material-property gradient index, different values of the applied voltages, the poros-
ity parameter, different porosity distribution patterns, the Winkler spring coefficient,
and the shear modulus of the surrounding medium on the natural frequencies of the
porous FG piezoelectric microplates are examined and appear to be significant.
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1. Introduction

In recent decades, piezoelectric materials have become important
in industrial applications. The benefits that these materials bring are derived
from the direct piezoelectric effect and the converse piezoelectric effect, which
cause mechanical energy to be converted into electrical energy and electric en-
ergy to be converted into mechanical energy, respectively [1]. In other words,
when a piezoelectric structure is subjected to mechanical loads, it undergoes
a mechanical deformation as positive and negative charges of the same magni-
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tude are generated on its opposite surfaces. The phenomenon of electrical po-
larization being caused by such a mechanical deformation is called the direct
piezoelectric effect. On the other hand, the application of an electric voltage
to the surface of a piezoelectric material increases the distance of the electric
dipole causing this material to lengthen in the direction of the electric field.
The phenomenon of a mechanical deformation being caused by the action of the
electric voltage is called the converse piezoelectric effect. In view of such excel-
lent bidirectional conversion capabilities, piezoelectric materials are widely used
in various cutting-edge technologies, including sensors, actuators, control sys-
tems, micro-electro-mechanical systems (MEMSs), and nano-electro-mechanical
systems (NEMSs). Accordingly, various analytical and numerical methods based
on classical continuum mechanics (CCM) have been developed in investigations
of the coupled electro-mechanical behavior of piezoelectric plates with the goals
of prolonging their service life and providing a reference for their structural
design. Comprehensive reviews of the literature have been conducted to assess
the scope of the application of such analytical and numerical methods. The
reviewed research has examined the coupled electro-mechanical behavior of lam-
inated composite piezoelectric plates and functionally graded (FG) piezoelectric
plates on the basis of the following two-dimensional (2D) and three-dimensional
(3D) plate theories based on the CCM: the classical plate theory (CPT), the
first-order shear deformation plate theory (FSDPT), Reddy’s refined shear de-
formation plate theory (RSDPT), the third-order shear deformation plate theory
(TSDPT), the sinusoidal shear deformation plate theory (SSDPT), the exponen-
tial shear deformation plate theory (ESDPT), the hyperbolic shear deformation
plate theory (HSDPT), and the 3D theory of piezoelectricity [2–8].

With the fields of precision manufacturing, materials science, and materi-
als technology developing rapidly, the dimensions of various industrial compo-
nents and devices have reached the scales of the micron (or 10−6 m) and the
nanometer (or 10−9 m). Because of their direct and converse piezoelectric ef-
fects, the piezoelectric material microplate (PMMP) has a great potential for
a wide range of applications in cutting edge technologies. For example: PMMP
has been adopted as a resonator in telecommunications and biotechnologies, it is
used in some devices which are: film buck acoustic wave resonators, microplate
resonators, microcantilevers, and microbridges [9, 10]; PMMP has been adopted
as an oscillator featuring an in-liquid piezoelectric microplate resonator as the
frequency-selective element for density and viscosity sensing [11]; and PMMP has
been adopted as an actuator in micropumps [12, 13]. In addition, piezoelectric
material has also been used to form some micro-sized instruments to promote
cell adhesion and spreading, including micropipets, microneedles, and micro-
spheres [14]. Some other applications of piezoelectric materials in macroscopic,
microscopic, and nanoscale smart structures can refer to Qiu and Ji [15].
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The use of the CCM-based analytical and numerical methods mentioned
above for analyzing FG piezoelectric macroplates is no longer feasible due to the
size effect, which is significant when the dimensions of the piezoelectric struc-
ture is shrunk to such small scales. Work carried out by Toupin [16], Mindlin
and Tiersten [17], and Koiter [18] forms the foundation of the couple stress
theory (CST), the so-called Toupin–Mindlin–Koiter CST (TMK-CST), which
was developed in order to account for the size effect in the analysis of various
mechanical behaviors of elastic microscale bodies. The TMK-CST introduced
a macro-rotation tensor to account for the true kinematics of rotational motion
in the CCM. However, some theoretical inconsistencies were encountered when
the TMK-CST was implemented, including the indeterminacy of the spherical
part of the couple-stress tensor and the appearance of the body couple in the
constitutive relation for the force-stress tensor [19], the further development of
the TMK-CST and its application have been suspended for the time being.

In order to overcome the shortcomings of the TMK-CST, Yang et al. [20]
developed a modified couple stress theory (MCST) for the analysis of elastic
microscale bodies. In their formulation, the couple-stress tensor was considered
to be a symmetric tensor conjugated with the symmetric part of the curvature
tensor which contributes significantly to the total strain energy of the system, and
an additional equilibrium relation was derived to govern the mechanical behavior
of the elastic microscale bodies which is attributable to the moment of the couple.
The MCST was then used to demonstrate that it is a feasible model for examining
the torsion behavior of a cylindrical bar and the pure bending behavior of a flat
plate of an infinite width. As a result, various size-dependent plate theories based
on the MCST have been developed for analyzing the mechanical behaviors of
laminated composite elastic microplates and FG elastic microplates, such as the
MCST-based CPT [21–24], the MCST-based FSDPT [23, 25], the MCST-based
RSDPT [26, 27], and the MCST-based SSDPT [28].

The MCST has also been applied to the analysis of the coupled electro-
mechanical behavior of FG piezoelectric microbeams and microplates. Incorpo-
rating the kinematic model of the Euler–Bernoulli beam theory into the MCST,
Beni and Beni [29] analyzed the dynamic stability behavior of size-dependent
viscoelastic/piezoelectric nanobeams, with the effect of von Kármán geometrical
nonlinearity taking into consideration. In conjunction with the kinematic model
of the Timoshenko beam theory and the CCST, Beni [30] studied the static
bending behavior of piezoelectric nanobeams subjected to electro-mechanical
loads. Combining the MCST with the displacement model of the CPT, Jafari
et al. [31] investigated the free vibration characteristics of sandwich piezoelectric
microplates, and Kazemi et al. [32] examined the free vibration characteris-
tics of FG microplates subjected to electrostatic and piezoelectric excitations.
Basing on the MCST-based CPT, Akgöz and Civalek [33] presented the ana-
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lytical solutions for bending, buckling, and vibration of microplates on an elas-
tic medium. In conjunction with the kinematic model of a refined plate theory
(RPT) and the MCST, Pham and Nguyen [34] developed a four-variable RPT-
based isogeometric analytical method for analyzing the dynamic stability behav-
ior of porous FG microplates. Ghobadi et al. [35] presented a size-dependent
thermo-electro-mechanical nonlinear bending analysis of nanoplates using the
modified flexoelectric theory (MFT), with the kinematic model of the CPT.
The MFT-based CPT was also applied to examine the size-dependent nonlin-
ear thermo-electro-mechanical free vibration characteristics of FG flexoelectric
nanoplates [36], to study the static bending behavior of porous flexoelectric cylin-
drical nanoshells [37], and to investigate the nonlinear vibration characteristics
of FG porous nanostructures, with the porosity distribution effect taking into
consideration [38].

Eringen’s nonlocal elasticity theory (ENET) has been applied to various me-
chanical analyses of porous FG nanoplates. Basing on the Hamilton principle,
Pham et al. [39] developed a four-node quadrilateral element with ten degrees of
freedom for each node for examining the bending and hygro-thermo-mechanical
vibration characteristics of porous sandwich FG doubly curved nanoshells resting
on the Winkler–Pasternak foundation. Pham et al. [40] developed an improved
triangular element based on the FSDT to investigate the static bending, free vi-
bration, and buckling behavior of porous FG nanoplates resting on the Winkler–
Pasternak foundation. Basing on the ENET combined with the kinematic model
of FSDT, Pham et al. [41] developed 3-node triangular element to study the free
vibration characteristics of porous FG annular nanoplates resting on the Winkler
foundation. Based on the ENET, Pham et al. [42] presented a dynamic analysis
for porous FG sandwich nanoplates using a higher-order isogeometric analytical
method.

Lou et al. [43] analyzed the buckling and post-buckling behaviors of sand-
wich piezoelectric microplates subjected to thermo-electro-mechanical loads us-
ing a size-dependent FSDPT based on the MCST. This approach has also been
used to examine both the shear buckling behavior of piezoelectric nanoplates
by Malikan [44] and the thermo-electro-mechanical buckling characteristics of
FG graphene platelets-reinforced composite (GPLRC) sandwich microplates by
Abbaspour and Arvin [45]. Incorporating the first-order shear deformation
model into the MCST, Safarpour et al. [46] investigated the thermal buckling
and the free and forced vibration behaviors of FG-GPLRC nanoscale cylindrical
shells which were subjected to hydraulic pressure and thermal loads resting on
the Winkler–Pasternak foundation. Li and Pan [47] developed a size-dependent
SSDPT based on the MCST to study the static bending and free vibration
behaviors of FG piezoelectric microplates subjected to electric voltages and me-
chanical loads acting on the top and bottom surfaces of the microplates. Com-
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bining the MCST with a four-variable shear deformation theory, Abazid and
Sobhy [48] studied the coupled thermo-electro-mechanical bending behavior of
FG piezoelectric microplates resting on the Winkler–Pasternak foundation, and
Nguyen and Lee [49] conducted an analysis of the static bending and free vi-
bration behaviors of FG-GPLRC piezoelectric microplates. In conjunction with
the MCST and Timoshenko’s beam model, Eshraghi and Dag [50] developed
a domain-boundary element method for transient dynamic analysis of FG mi-
crobeams with considering small-scale effects. Incorporating the MCST with the
Euler–Bernoulli beam model, Razeghi-Harikandeei et al. [51] studied the
delamination effect on the static bending, free vibration, and forced vibration
behavior of a delaminated microbeam-based MEMS subjected to the nonlinear
electrostatic force. Finally, Karimipour et al. [52] developed a generalized dif-
ferential quadrature (GDQ) method for the 3D static bending and free vibration
analyses of micro-sized torus panels, for which a general curvilinear coordinate
system was used to derive the formulation, such that it can be applied to various
mechanical analyses of irregular geometries, cap-shaped panels, saddle-shaped
panels, and sectional-shaped panels.

In response to the problematic nature of the TMK-CST, Hadjesfandiari
and Dargush [53, 54] and Hadjesfandiari [55] developed a new version of
the CST, the consistent couple stress theory (CCST), which was applied to
the analysis of elastic microscale bodies and piezoelectric microscale bodies, re-
spectively. In these studies, the couple-stress tensor was a skew-symmetric ten-
sor, conjugated with the skew-symmetric part of the curvature tensor, with the
skew-symmetric couple-stress tensor and the skew-symmetric curvature tensor
contributing significantly to the total strain energy of the system. It should be
noted that in the formulation of the CCST applied to the analysis of piezoelec-
tric bodies, the effects of flexoelectricity, piezoelectricity, and the material length
scale parameter on the coupled electro-mechanical behavior of piezoelectric bod-
ies were accounted for.

Based on the CCST and the MCST, some size-dependent plate/beam theories
have also been developed for investigating the coupled electro-mechanical behav-
ior of FG piezoelectric microplates/microshells, with the piezoelectric effect being
considered. For instance, Abbaspour and Arvin [56] developed a CCST-based
CPT for analyzing the vibration and thermal buckling behaviors of three-layered
piezoelectric microplates. Incorporating the CCST and the Donnell shell theory,
Razavi et al. [57] and Zeng et al. [58] investigated the free vibration and static
buckling behaviors of FG piezoelectric nanoscale cylindrical shells, respectively,
for which the piezoelectric effect, the material length scale parameter effect, and
the material-property gradient index effect on the frequency parameters and the
critical load parameters of piezoelectric microplates and piezoelectric microshells
were examined.
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After a close survey of the relevant literature, we found no studies exam-
ining the issue of interest here, namely the analysis of the free vibration be-
havior of simply-supported, porous FG piezoelectric microplates which rest on
the Winkler–Pasternak foundation and are subjected to electric voltages in the
context of electro-mechanical coupling. Wu and Hu [59] did develop a unified
size-dependent theory based on the CCST to analyze the static bending and
free vibration behaviors of FG elastic microplates, rather than FG piezoelectric
microplates. Therefore, in this work we aim to develop a CCST-based unified
size-dependent theory to be applied to the study of porous FG piezoelectric mi-
croplates. Basing on Hamilton’s principle, we derive the Euler–Lagrange equa-
tions of FG piezoelectric microplates and their corresponding possible boundary
conditions. Accordingly, the derived Euler–Lagrange equations are used to obtain
the natural frequencies of simply-supported, porous FG piezoelectric microplates
and their corresponding vibration mode shapes on the basis of Navier’s method.
A number of key effects on the natural frequencies of the porous FG piezoelectric
microplates are investigated, including the material length scale parameter, the
length-to-thickness ratio, the material-property gradient index, different values
of the applied voltages, the porosity parameter, different porosity distribution
patterns, the Winkler spring coefficient, and the shear modulus of the medium
surrounding the microplate.

2. Formulations

In this work, by integrating the CCST applied to the analysis of piezoelec-
tric microscale bodies together with Hamilton’s principle, we aim to develop
a unified size-dependent theory to examine the free vibration characteristics of
simply-supported, porous FG piezoelectric microplates resting on the Winkler–
Pasternak foundation and are subjected to electric voltages acting on the top
and bottom surfaces. The properties of the microplate material are assumed to
obey a power–Law distribution of the volume fractions of the constituents in the
direction of the thickness of the microplates, and the effective material properties
are estimated using the rule of mixtures. The distribution of the porosity in the
direction of the thickness of the microplates is categorized into two types, Types
A and B. Regarding the former, the functions for three patterns of porosity dis-
tribution are considered for the purposes of comparison, and for the latter, the
functions for four porosity distribution patterns are used in a parametric study
presented in a later section of this paper. A schematic diagram of the kind of
porous FG piezoelectric microplate of interest in this study is shown in Fig. 1,
with the electric voltages V0 and −V0 applied to the top and bottom surfaces,
respectively. The electric potentials and the stress tractions acting on the edges
of the microplate are set to zero.
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Fig. 1. A schematic diagram of a porous FG piezoelectric microplate which resting on the
Winkler–Pasternak foundation is subjected to electric voltages.

As mentioned above, Hadjesfandiari and Dargush [53, 54] first developed
a CCST for analyzing elastic microscale bodies, which Hadjesfandiari [55]
subsequently applied to address the analysis of a piezoelectric microscale body.
Hadjesfandiari and Dargush indicated that the force-stress tensor (σij) induced
at a material point in a deformed piezoelectric microscale body was asymmetric
and the couple-stress tensor (µij) was skew-symmetric. The force-stress tensor
was thus decomposed into its symmetric (σ(ij)) and skew-symmetric (σ[ij]) parts,
which were represented using parentheses and brackets surrounding the pair of
indices, respectively.

According to Hadjesfandiari’s derivation, the skew-symmetric part of the
force-stress tensor can be expressed in terms of the couple-stress tensor as follows:

(2.1) σ[ji] = −1
2(µi,j −µj ,i),

where µk = µji = −µij , and the subscripts i, j, and k permute in a natural
order.

The strain energy density function of a piezoelectric microscale solid is a func-
tion of the strain tensor (εij), the skew-symmetric part of the curvature ten-
sor (κij), and the electric field tensor (Ek). The strain tensor is symmetric and
conjugated with the symmetric part of the force-stress tensor (σ(ij)), the skew-
symmetric part of the curvature tensor is conjugated with the couple-stress ten-
sor (µij), and the electric field tensor is conjugated with the electric displace-
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ment (flux) tensor (Dk). The strain energy density function in a piezoelectric
microscale body occupying a volume Ω can thus be written as follows:

(2.2) Us =

∫
Ω

[
1
2σ(ij)εij − µijκij − 1

2DkEk
]
dΩ.

2.1. Generalized kinematics

In this unified size-dependent theory for analyzing a porous FG piezoelectric
microplate, the components of the generalized displacement are expressed as
follows:

ux(x, y, z, t) = u(x, y, t)− z ∂w(x, y, t)

∂x
+ f(z)γx(x, y, t),(2.3)

uy(x, y, z, t) = v(x, y, t)− z ∂w(x, y, t)

∂y
+ f(z)γy(x, y, t),(2.4)

uz(x, y, z, t) = w(x, y, t),(2.5)
Φ(x, y, z, t) = −g(z)φ(x, y, t) + (2zV0/h),(2.6)

where u, v, and w represent the mid-plane displacements of the microplate in the
x, y, and z directions, respectively; φ is defined as the mid-plane electric poten-
tial of the microplate; and γx and γy denote the mid-plane shear rotations of the
microplate in the xz-plane and yz-plane, respectively. The values of V0 and −V0

are the constant electric voltages applied to the top and the bottom surfaces
of the microplate, respectively. The form of g(z) is given as g(z) = cos(πz/h).
The assumed form of Φ(x, y, z, t) presented in Eq. (2.6) was first proposed by
Wang [60], and in subsequent work by Wang et al. [61], it was validated along
with the natural frequency parameters of a piezoelectric plate obtained using
a theoretical model and the finite element method. The assumed form of Φ has
since been commonly used by other researchers [35, 43, 47, 48]. The through-
thickness distribution of the transverse shear deformations is characterized by
f(z)/dz, for which f(z) denotes a specific function of z. The generalized dis-
placement fields of the CPT and various SDPTs can be obtained by defining
f(z) as follows:

CPT : f(z) = 0,(2.7)
FSDPT : f(z) = z,(2.8)

RSDPT : f(z) = z − [(4z3)/(3h2)],(2.9)
SSDPT : f(z) = (h/π) sin(πz/h),(2.10)

ESDPT : f(z) = ze−(2z2/h2),(2.11)
HSDPT : f(z) = z cosh(1/2)− h sinh(z/h).(2.12)
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The strain-displacement relations of the microplate are given as:

εxx = u,x−zw,xx +fγx,x ,(2.13)
εyy = v,y −zw,yy +fγy,y ,(2.14)
εzz = 0,(2.15)
γxz = (Df)γx,(2.16)
γyz = (Df)γy,(2.17)
γxy = u,y +v,x−2zw,xy +f(γx,y +γy,x),(2.18)

where the commas in Eqs. (2.13)–(2.18) represent the derivative of the suffix
variable, and Df = df(z)/dz.

The relationship between the electric field and the electric potential of the
microplate is expressed as:

Ex = gφ,x ,(2.19)
Ey = gφ,y ,(2.20)
Ez = (Dg)φ− (2V0/h),(2.21)

where Dg = dg(z)/dz.
The rotation-displacement relationship of the microplate is expressed as:

(2.22) θ = θxi + θyj + θzk = 1
2 curl(u),

where i, j, and k denote the unit base vectors in the x, y, and z directions,
respectively, and:

u = uxi + uyj + uzk,(2.23)
θx = θzy = 1

2 [2w,y −(Df)γy],(2.24)
θy = θxz = 1

2 [−2w,x +(Df)γx],(2.25)
θz = θyx = 1

2 [(v,x−u,y) + f(γy,x−γx,y)].(2.26)

The symmetric part of the curvature tensor of the microplate is expressed as:

χxx = θx,x = 1
2 [2w,xy −(Df)γy,x],(2.27)

χyy = θy,y = 1
2 [−2w,xy +(Df)γx,y],(2.28)

χzz = θz,z = 1
2 [(Df)(γy,x−γx,y)],(2.29)

χxz = 1
2(θx,z +θz,x) = 1

4 [(v,xx−u,xy) + f(γy,xx−γx,xy)− (D2f)γy],(2.30)

χyz = 1
2(θy,z +θz,y) = 1

4 [(v,xy −u,yy) + f(γy,xy −γx,yy) + (D2f)γx],(2.31)
χxy = 1

2(θx,y +θy,x) = 1
4 [2(w,yy −w,xx) + (Df)(γx,x−γy,y)],(2.32)

where D2f = d2f/dz2.
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The skew-symmetric part of the curvature tensor κ of the microplate is ex-
pressed as:

(2.33) κ = κxi + κyj + κzk = 1
2 curl(θ),

where

κx = κzy = 1
4 [(v,xy −u,yy) + f(γy,xy −γx,yy)− (D2f)γx],(2.34)

κy = κxz = 1
4 [(u,xy −v,xx) + f(γx,xy −γy,xx)− (D2f)γy],(2.35)

κz = κyx = 1
4 [−2(w,xx +w,yy) + (Df)(γx,x +γy,y)].(2.36)

2.2. Generalized constitutive equations

As aforementioned, in this work we consider two types of porosity distribu-
tions in the direction of the thickness of the microplate, Types A and B. In the
case of Type A, the functions of three patterns of the porosity distribution are
considered for the purposes of comparison, and for Type B, the functions of four
distribution patterns are considered for a parametric study. These functions are
held to represent the volume fraction of the porosity, ψ(z), and they are pre-
sented in the following sections for both types of distributions in addition to
their corresponding effective material properties, P (z).

For Types A-1, A-2, and A-3, the functions of the porosity distribution
through the thickness of the microplate are expressed as:

Type A-1: ψ(z) = ψ0,(2.37a)
Type A-2: ψ(z) = ψ0[1− (2|z|/h)],(2.37b)

Type A-3: ψ(z) = ψ0

[
1
2 − (|z|/h)

]κψ ,(2.37c)

where ψ0 denotes the porosity parameter; κψ denotes the porosity gradient index.
The functions of the volume fractions of the porosity for Type A-1 and A-2 are
taken from Barati et al. [62] and that for Type A-3 from Karamanli and
Aydogdu [63].

The effective material properties of Types A-1, A-2, and A-3, following the
formulation devised by Shafiei et al. [64], are expressed as:

P (z) = Pt[Vt − (ψ(z)/2)] + Pb[Vb − (ψ(z)/2)](2.38)
= (Pt − Pb)Vt + Pb − [(Pt + Pb)ψ(z)/2],

where the volume fraction of the porosity is assumed to be equally distributed
throughout the constituent materials of the microplate; the subscripts t and b
represent the top and bottom surfaces of the microplate, respectively; Pt and Pb
denote the material properties of the top and bottom surfaces of the microplate,
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respectively; Vt and Vb denote the volume fractions of the constituent materials
on the top and bottom surfaces of the microplate, respectively; Vt=

[
1
2 +(z/h)

]κp;
Vt+Vb = 1; and κp represents the material-property gradient index. In the work
of Karamanli and Aydogdu [63], the porosity gradient index (κψ) and the
material-property gradient index (κp) were assumed to be identical.

For Types B-1, B-2, B-3, and B-4, the functions of the volume fractions of
the porosity through the thickness of the microplate are expressed as:

Type B-1: ψ(z) = 2ψ0/π,(2.39a)
Type B-2: ψ(z) = ψ0 cos(πz/h),(2.39b)
Type B-3: ψ(z) = ψ0 cos{(π/2)[(z/h) + (1/2)]},(2.39c)
Type B-4: ψ(z) = ψ0 cos{(π/2)[(z/h)− (1/2)]},(2.39d)

with the functions for Types B-2, B-3, and B-4 taken from Kim et al. [25].
Because the pore volumes of these four Types remain constant, they can be used
for a parametric study in a later part of this paper, where the pore volumes are
expressed as:

h/2∫
−h/2

ψ(z) dz =
2hψ0

π
.

The effective material properties of Types B-1, B-2, B-3, and B-4 are ex-
pressed following Kim et al. [25] as:

(2.40) P (z) = [(Pt − Pb)Vt + Pb][1− ψ(z)],

where Vt =
[

1
2 + (z/h)

]κp .
Based on the plane stress assumptions, the generalized constitutive equations

of the microplate composed of an FG piezoelectric orthotropic material can be
expressed following Hadjesfandiari [55] as:

σ(xx)

σ(yy)

σ(xy)

σ(yz)

σ(xz)

 =


c̄11 c̄12 0 0 0
c̄12 c̄22 0 0 0
0 0 c66 0 0
0 0 0 c44 0
0 0 0 0 c55



εxx
εyy
γxy
γyz
γxz

−


0 0 ē31

0 0 ē32

0 0 0
0 e24 0
e15 0 0



Ex
Ey
Ez

(2.41)

+


0 0 d̄31

0 0 d̄32

0 0 0
0 d24 0
d15 0 0



κx
κy
κz

 ,
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Dx

Dy

Dz

 =

 0 0 0 0 e15

0 0 0 e24 0
ē31 ē32 0 0 0



εxx
εyy
γxy
γyz
γxz

+

 η11 0 0
0 η22 0
0 0 η̄33


Ex
Ey
Ez

(2.42)

+

 a11 0 0
0 a22 0
0 0 ā33


κx
κy
κz

 ,


µx
µy
µz

 = −1

2

 0 0 0 0 d15

0 0 0 d24 0
d̄31 d̄32 0 0 0



εxx
εyy
γxy
γyz
γxz

+
1

2

 a11 0 0
0 a22 0
0 0 ā33


Ex
Ey
Ez

(2.43)

− 1

2

 b11 0 0
0 b22 0
0 0 b̄33


κx
κy
κz

 ,

where cij and c̄ij are the elastic and reduced elastic coefficients of the mi-
croplate, respectively, and c̄ij = cij − (ci3cj3/c33) (i, j = 1, 2). eij and ēij are
the piezoelectric and reduced piezoelectric coefficients of the microplate, res-
pectively, and ē3k = e3k − (e33ck3/c33) (k = 1, 2). The variables dij and d̄ij
are the coupling force-stress and couple-stress coefficients and the reduced cou-
pling force-stress and couple-stress coefficients of the microplate, respectively,
and d̄3k = d3k − (d33ck3/c33) (k = 1, 2). For an isotropic piezoelectric mate-
rial, c̄11 = c̄22 = E/(1− υ2), c̄12 = υE/(1− υ2), and c44 = c55 = c66 =
G = E/[2(1 + υ)], in which E and υ denote Young’s modulus and Poisson’s
ratio, respectively, e24 = e15 = d24 = d15 = 0, ē31 = ē32, d̄31 = d̄32, and
b̄31 = b̄32. In addition, for an isotropic piezoelectric material, the coupling force-
stress and couple-stress coefficients dij were deduced as being equal to zero by
Hadjesfandiari [55]. The effect of dij has not been considered in the published
literature so far, and so it has been discarded from the following derivation.
Furthermore, ηkk and η̄kk are the permittivity (or dielectric) and reduced per-
mittivity (or dielectric) coefficients, respectively, and η̄33 = η33 + (e33e33/c33).
For an isotropic piezoelectric material, the nonzero dielectric coefficients η11,
η22, and η33 are defined as η11 = η22 = η33 = ηe. The variables akk and
ākk are the flexoelectric and reduced flexoelectric coefficients, respectively, and
ā33 = a33−(e33d33/c33). For an isotropic piezoelectric material, the nonzero flexo-
electric coefficients a11, a22, and a33 are defined following Hadjesfandiari [55]
as a11 = a22 = a33 = 4fe, where fe denotes the flexoelectric parameter. The
variables bkk and b̄kk are the coupling and reduced coupling coefficients between
the couple-stress tensor and the skew-symmetric part of the curvature tensor,
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respectively, and b̄33 = b33 − (d33d33/c33). For an isotropic piezoelectric mate-
rial, the nonzero coupling coefficients between the couple-stress tensor and the
skew-symmetric part of the curvature tensor b11, b22, and b33 are defined follow-
ing Hadjesfandiari [55] as b11 = b22 = b33 = 16Gl2, where l represents the
material length scale parameter. This parameter reflects the effect of the couple
stress tensor which is significant when the dimensions of the structures are in
the microscale and the nanoscale ranges.

2.3. Euler–Lagrange equations and the possible boundary conditions

Basing on Hamilton’s principle, we derive the Euler–Lagrange equations as-
sociated with the possible boundary conditions for the unified size-dependent
theory by requiring the first-order variation of the relevant energy functional in
a time interval from t1 to t2 to be zero as follows:

(2.44) δ

t2∫
t1

(T − Us +W ) dt = 0,

where T represents the kinetic energy functional, Us denotes the strain energy
functional, and W is the work done due to both the initial in-plane force re-
sultants induced by the applied voltages acting on the top and bottom sur-
faces of the microplate and the restoring forces of the Winkler–Pasternak foun-
dation. The variable tis the time, and the operator δ is called the variational
operator.

The first-order variation of the kinetic energy functional can be written as

δ

t2∫
t1

T dt =

t2∫
t1

{∫∫
Ω

[
− I0u,tt δu− I1u,xtt δw − I3u,tt δγx + I1w,xtt δu(2.45)

+ I2w,xxtt δw + I4w,xtt δγx − I3γx,tt δu− I4γx,xtt δw

− I5γx,tt δγx − I0v,tt δv − I1v,ytt δw − I3v,tt δγy + I1w,ytt δv

+ I2w,yytt δw + I4w,ytt δγy − I3γy,tt δv − I4γy,ytt δw
]

− I5γy,tt δγy − I0w,tt δw

}
dΩ dt

+

t2∫
t1

∮
Γ

{
I1(u,tt nx + v,tt ny)δw − I2(w,xtt nx + w,ytt ny)δw

+ I4(γx,tt nx + γy,tt ny)δw

}
dΓ dt,
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where Ω and Γ denote the mid-plane domain of the plate and its boundary edges,
respectively; ( I0 I1 I2 I3 I4 I5 ) =

∫ h/2
−h/2 ρ( 1 z z2 f zf f2 ) dz, and ρ denotes

the mass density of the plate.
The first-order variation of the strain energy functional in the time interval

[t1, t2] can be written as

δ

t2∫
t1

Us dt =

t2∫
t1

∫∫
Ω

h/2∫
−h/2

[
σ(xx)δεxx+σ(yy)δεyy+σ(xy)δγxy+σ(xz)δγxz(2.46)

+σ(yz)δγyz−2µxyδκxy−2µyzδκyz−2µxzδκxz

−DxδEx−DyδEy−DzδEz

]
dΩ dz dt

=

t2∫
t1

∫∫
Ω

{
Nσ

(xx)δu,x−M
σ
(xx)δw,xx +P σ(xx)δγx,x +Nσ

(yy)δv,y

−Mσ
(yy)δw,yy +P σ(yy)δγy,y +Nσ

(xy)(δu,y +δv,x)

−2Mσ
(xy)δw,xy +P σ(xy)(δγx,y +δγy,x)+Rσ(xz)δγx+Rσ(yz)δγy

−Mµ
[xy](δw,xx +δw,yy)+ 1

2S
µ
[xy](δγx,x +δγy,y )

− 1
2M

µ
[yz](δu,yy −δv,xy)−

1
2R

µ
[yz](δγx,yy −δγy,xy)−

1
2T

µ
[yz]δγx

− 1
2M

µ
[xz](δu,xy −δv,xx)− 1

2R
µ
[xz](δγx,xy −δγy,xx)+ 1

2T
µ
[xz]δγy

−RDx δφ,x−RDy δφ,y −TDz δφ
}
dΩ dt,

where the relationships between the relevant generalized force and moment re-
sultants and the generalized displacement components are given in Appendix A.

By performing the integration by parts, we can rewrite Eq. (2.46) as follows:

(2.47) δ

t2∫
t1

Us dt =

t2∫
t1

∫∫
Ω

{
−Nσ

(xx),x δu−M
σ
(xx),xx δw−P

σ
(xx),x δγx

−Nσ
(yy),y δv −M

σ
(yy),yy δw − P

σ
(yy),y δγy −N

σ
(xy),y δu−N

σ
(xy),x δv

− 2Mσ
(xy),xy δw − P

σ
(xy),y δγx − P

σ
(xy),x δγy +Rσ(xz)δγx +Rσ(yz)δγy

−Mµ
[xy],xx δw −M

µ
[xy],yy δw −

1
2 [Sµ[xy],x δγx + Sµ[xy],y δγy]

− 1
2 [Mµ

[yz],yy δu−M
µ
[yz],xy δv]− 1

2 [Rµ[yz],yy δγx −R
µ
[yz],xy δγy]−

1
2T

µ
[yz]δγx

− 1
2 [Mµ

[xz],xy δu−M
µ
[xz],xx δv]− 1

2 [Rµ[xz],xy δγx −R
µ
[xz],xx δγy]

+ 1
2T

µ
[xz]δγy +RDx ,x δφ+RDy ,y δφ− TDz δφ

}
dΩ dt

+ boundary condition terms.
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The first-order variation of the work done is given as

δ

t2∫
t1

W dt = −
t2∫
t1

∫∫
Ω

(N̄(xx)δε
nl
xx + N̄(yy)δε

nl
yy) dΩ dt(2.48)

−
t2∫
t1

∫∫
Ω

[kww − kG(w,xx +w,yy)]δw dΩ dt

−
t2∫
t1

∮
Γ

(kGw,x nx + kGw,y ny)δw dΓ dt

=

t2∫
t1

∫∫
Ω

(N̄(xx)w,xx +N̄(yy)w,yy)δw dΩ dt

−
t2∫
t1

∮
Γ

[N̄(xx)w,x nx + N̄(yy)w,y ny]δw dΓ dt

−
t2∫
t1

∫∫
Ω

[kww − kG(w,xx +w,yy)]δw dΩ dt

−
t2∫
t1

∮
Γ

(kGw,x nx + kGw,y ny)δw dΓ dt,

where N̄(xx) and N̄(yy) are the initial in-plane force resultants induced by the
applied voltages acting on the top and bottom surfaces of the microplate, and
εnlxx and εnlyy are the von Kármán nonlinear strains. The variables of N̄(xx), N̄(yy),
εnlxx, and εnlyy are given as follows:

N̄(xx) =

h/2∫
−h/2

e31(2V0/h) dz,(2.49)

N̄(yy) =

h/2∫
−h/2

e32(2V0/h) dz,(2.50)

εnlxx = 1
2(w,x)2,(2.51)

εnlyy = 1
2(w,y)

2,(2.52)
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where the initial in-plane force resultants, N̄(xx) and N̄(yy), induced in the piezo-
electric plates which were formed by PZT-4 and PZT-5H are compressive as the
applied voltages, V0, are positive because their values of e31 and e32 are negative,
and vice versa.

By substituting Eqs. (2.45), (2.47), and (2.48) into Eq. (2.44) and setting the
coefficients of δu, δv, δw, δγx, δγy and δφ to zero, we obtain the following Euler–
Lagrange equations of the unified size-dependent piezoelectric plate theory and
its associated possible boundary conditions:

δu: − (Nσ
(xx)),x−(Nσ

(xy)),y −
1
2(Mµ

[yz]),yy −
1
2(Mµ

[xz]),xy(2.53)

= −I0u,tt +I1w,xtt−I3γx,tt ,

δv: − (Nσ
(xy)),x−(Nσ

(yy)),y +1
2(Mµ

[yz]),xy +1
2(Mµ

[xz]),xx(2.54)

= −I0v,tt +I1w,ytt−I3γy,tt ,

δw: − (Mσ
(xx)),xx−2(Mσ

(xy)),xy −(Mσ
(yy)),yy −(Mµ

[xy]),xx(2.55)

− (Mµ
[xy]),yy −N̄(xx)w,xx−N̄(yy)w,yy +[kww − kG(w,xx +w,yy)]

= −I1u,xtt−I1v,ytt +I2w,xxtt +I2w,yytt

− I4γx,xtt−I4γy,ytt−I0w,tt ,

δγx: − (P σ(xx)),x−(P σ(xy)),y +(Rσ(xz))−
1
2(Sµ[xy]),x(2.56)

− 1
2(Rµ[xz]),xy −

1
2(Rµ[yz]),yy −

1
2(Tµ[yz])

= −I3u,tt +I4w,xtt−I5γx,tt ,

δγy: − (P σ(xy)),x−(P σ(yy)),y +(Rσ(yz))−
1
2(Sµ[xy]),y +1

2(Rµ[xz]),xx

+ 1
2(Rµ[yz]),xy +1

2(Tµ[xz])(2.57)

= −I3v,tt +I4w,ytt−I5γy,tt ,

δφ: (RDx ),x +(RDy ),y −TDz = 0.(2.58)

The possible boundary conditions at the edges are obtained as follows:

either (Nσ
(xx))nx + (Nσ

(xy))ny + 1
2(Mµ

[xz]),y nx + 1
2(Mµ

[yz]),y ny = 0(2.59a)

or u = û,

either − 1
2(Mµ

[xz])ny = 0 or u,x = û,x ,(2.59b)

either − 1
2(Mµ

[yz])ny = 0 or u,y = û,y ;(2.59c)

either (Nσ
(xy))nx + (Nσ

(yy))ny −
1
2(Mµ

[xz]),x nx −
1
2(Mµ

[yz]),x ny = 0(2.60a)

or v = v̂,

either 1
2(Mµ

[xz])nx = 0 or v,x = v̂,x ,(2.60b)
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either 1
2(Mµ

[yz])nx = 0 or v,y = v̂,y ;(2.60c)

either (Mσ
(xx)),x nx + (Mσ

(yy)),y ny + (Mσ
(xy)),x ny + (Mσ

(xy)),y nx(2.61a)

+ (Mµ
[xy]),x nx + (Mµ

[xy]),y ny + (N̄(xx)w,x nx + N̄(yy)w,y ny)

+ kG(w,x nx + w,y ny)− I1(u,tt nx + v,tt ny)

+ I2(w,xtt nx + w,ytt ny)− I4(γx,tt nx + γy,tt ny) = 0

or w = ŵ,

either − (Mσ
(xx))nx − (Mσ

(xy))ny − (Mµ
[xy])nx = 0 or w,x = ŵ,x ,(2.61b)

either − (Mσ
(xy))nx − (Mσ

(yy))ny − (Mµ
[xy])ny = 0 or w,y = ŵ,y ;(2.61c)

either (P σ(xx))nx + (P σ(xy))ny + 1
2(Sµ[xy])nx + 1

2(Rµ[xz]),y nx(2.62a)

+ 1
2(Rµ[yz]),y ny = 0 or γx = γ̂x,

either − 1
2(Rµ[xz])ny = 0 or γx,x = γ̂x,x ,(2.62b)

either − 1
2(Rµ[yz])ny = 0 or γx,y = γ̂x,y ;(2.62c)

either (P σ(xy))nx + (P σ(yy))ny + 1
2(Sµ[xy])ny(2.63a)

− 1
2(Rµ[xz]),x nx −

1
2(Rµ[yz]),x ny = 0 or γy = γ̂y,

either 1
2(Rµ[xz])nx = 0 or γy,x = γ̂y,x ,(2.63b)

either 1
2(Rµ[yz])nx = 0 or γy,y = γ̂y,y ;(2.63c)

(2.64) either −RDx nx −RDy ny = 0 or φ = φ̂,

where û, v̂, ŵ, γ̂x, γ̂y, and φ̂ represent the prescribed generalized displacement
components along the edges of the microplate.

The following Euler–Lagrange equations expressed in terms of the generalized
displacement components can be obtained by substituting Eqs. (A.1)–(A.21) into
Eqs. (2.53)–(2.58):

δu: K11u+K12v +K13w +K14γx +K15γy +K16φ(2.65)
= −I0u,tt +I1w,xtt−I3γx,tt ,

δv: K21u+K22v +K23w +K24γx +K25γy +K26φ(2.66)
= −I0v,tt +I1w,ytt−I3γy,tt ,

δw: K31u+K32v +K33w +K34γx +K35γy +K36φ(2.67)
= −I1u,xtt−I1v,ytt−I0w,tt +I2(w,xxtt +w,yytt)

− I4(γx,xtt +γy,ytt),
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δγx: K41u+K42v +K43w +K44γx +K45γy +K46φ(2.68)
= −I3u,tt +I4w,xtt−I5γx,tt ,

δγy: K51u+K52v +K53w +K54γx +K55γy +K56φ(2.69)
= −I3v,tt +I4w,ytt−I5γy,tt ,

δφ: K61u+K62v +K63w +K64γx +K65γy +K66φ = −F η33f (V0/h),(2.70)

where

K11 = − (A11∂xx +A66∂yy) + 1
16(Ab22∂xxyy +Ab11∂yyyy),

K12 = − (A12 +A66)∂xy − 1
16(Ab22∂xxxy +Ab11∂xyyy),

K13 = B11∂xxx + (B12 + 2B66)∂xyy,

K14 = − (A11f∂xx +A66f∂yy) + 1
16(Ab22f∂xxyy +Ab11f∂yyyy + F b11f∂yy),

K15 = − (A12f +A66f )∂xy − 1
16(Ab22f∂xxxy +Ab11f∂xyyy + F b22f∂xy),

K16 = F̂ e31f∂x + 1
4(Êa11f − Êa22f )∂xyy,

K21 = K12,

K22 = − (A66∂xx +A22∂yy) + 1
16(Ab22∂xxxx +Ab11∂xxyy),

K23 = (B12 + 2B66)∂xxy +B22∂yyy,

K24 = − (A12f +A66f )∂xy − 1
16(Ab22f∂xxxy +Ab11f∂xyyy + F b11f∂xy),

K25 = − (A66f∂xx +A22f∂yy) + 1
16(Ab22f∂xxxx +Ab11f∂xxyy + F b22f∂xx),

K26 = F̂ e32f∂y + 1
4(Êa22f − Êa11f )∂xxy,

K31 = −K13, K32 = −K23,

K33 = [D11∂xxxx + (2D12 + 4D66)∂xxyy +D22∂yyyy]− [N̄(xx)∂xx + N̄(yy)∂yy]

+ [kw − kG(∂xx + ∂yy)] + (Ab33/4)[(∂xxxx + 2∂xxyy + ∂yyyy)],

K34 = − [B11f∂xxx + (B12f + 2B66f )∂xyy]− (Eb33f/8)(∂xxx + ∂xyy),

K35 = − [(B12f + 2B66f )∂xxy +B22f∂yyy]− (Eb33f/8)(∂xxy + ∂yyy),

K36 = P̂ e31f∂xx + P̂ e32f∂yy + (F̂ a33f/2)(∂xx + ∂yy),

K41 = K14, K42 = K24, K43 = −K34,

K44 = − (H11f∂xx +H66f∂yy − J55f ) + (1/16)[Hb
22f∂xxyy +Hb

11f∂yyyy

− Jb33f∂xx + 2Lb11f∂yy +N b
11f ],

K45 = − (H12f +H66f )∂xy

− 1
16 [Hb

22f∂xxxy +Hb
11f∂xyyy + (Jb33f + Lb11f + Lb22f )∂xy],

K46 = (L̂e31f − J̄e15f )∂x + (1/4)[(K̂a
11f − K̂a

22f )∂xyy + (M̂a
11f + M̄a

33f )∂x],

K51 = K15, K52 = K25, K53 = −K35, K54 = K45,
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K55 = − (H66f∂xx +H22f∂yy − J44f ) + 1
16 [Hb

22f∂xxxx +Hb
11f∂xxyy

+ 2Lb22f∂xx − Jb33f∂yy +N b
22f ],

K56 = (1/4)(K̂a
22f − K̂a

11f )∂xxy + [(L̂e32f − J̄e24f ) + 1
4(M̂a

22f + M̄a
33f )]∂y,

K61 = −K16, K62 = −K26, K63 = K36, K64 = −K46, K65 = −K56,

K66 = Ĵη11f∂xx + Ĵη22f∂yy − N̂
η
33f ,

where the definitions of the coefficients

(Aij Bij Dij Aijf Bijf Dijf Eijf Fijf Hijf Jijf ),

(Alij B
l
ij D

l
ij A

l
ijf B

l
ijf D

l
ijf E

l
ijf F

l
ijf H

l
ijf J

l
ijf K

l
ijf L

l
ijf M

l
ijf N

l
ijf P

l
ijf )

(l = a, b, and e), and

( Êlijf F̂
l
ijf Ĵ

l
ijf J̄

l
ijf K̂

l
ijf L̂

l
ijf M̂

l
ijf M̄

l
ijf N̂

l
ijf P̂

l
ijf )

(l = a, b, and e) are given in Eqs. (A.25)–(A.27) presented in Appendix A.

3. Applications

Equations (2.65)–(2.70), which are associated with a set of boundary condi-
tions presented in Eqs. (2.59a)–(2.64) can be formulated as a well-posed bound-
ary value problem, for which the Navier-type analytical solutions of the natural
frequencies for the free vibration analysis of a simply-supported, porous FG
piezoelectric microplate can be obtained using the double Fourier series expan-
sion method.

The simply-supported boundary conditions of such a microplate are expressed
as follows:

At x =0 and x = Lx,

Nσ
(xx) = 0,(3.1)

v = 0,(3.2)
w = 0,(3.3)
Mσ

(xx) +Mµ
[xy] = 0,(3.4)

w,y = 0,(3.5)
P σ(xx) + 1

2(Sµ[xy]) = 0,(3.6)

γy = 0,(3.7)
φ = 0,(3.8)
Mµ

[xz] = Mµ
[yz] = Rµ[xz] = Rµ[yz] = 0.(3.9)
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At y =0 and y = Ly,

u = 0,(3.10)
Nσ

(yy) = 0,(3.11)

w = 0,(3.12)
w,x = 0,(3.13)
Mσ

(yy) +Mµ
[xy] = 0,(3.14)

γx = 0,(3.15)
P σ(yy) + 1

2S
µ
[xy] = 0,(3.16)

φ = 0,(3.17)
Mµ

[xz] = Mµ
[yz] = Rµ[xz] = Rµ[yz] = 0.(3.18)

By satisfying the simply-supported boundary conditions presented in
Eqs. (3.1)–(3.18), we expand various field variables of the microplate as the
double Fourier series as follows:

u =

∞∑
m̂=1

∞∑
n̂=1

um̂n̂ cos(m̃x) sin(ñy)eiωt,(3.19)

v =

∞∑
m̂=1

∞∑
n̂=1

vm̂n̂ sin(m̃x) cos(ñy)eiωt,(3.20)

w =

∞∑
m̂=1

∞∑
n̂=1

wm̂n̂ sin(m̃x) sin(ñy)eiωt,(3.21)

γx =

∞∑
m̂=1

∞∑
n̂=1

γxm̂n̂ cos(m̃x) sin(ñy)eiωt,(3.22)

γy =
∞∑
m̂=1

∞∑
n̂=1

γym̂n̂ sin(m̃x) cos(ñy)eiωt,(3.23)

φ =
∞∑
m̂=1

∞∑
n̂=1

φm̂n̂ sin(m̃x) sin(ñy)eiωt,(3.24)

where m̃ = m̂π/Lx, and ñ = n̂π/Ly, with m̂ and n̂ representing the half-
wave numbers, which are positive integers. The symbol ω represents the natural
frequency of the microplate.

Substituting Eqs. (3.19)–(3.24) into Euler–Lagrange Eqs. (2.65)–(2.70) leads
to the following system of equations applied to the free vibration analysis of the
piezoelectric microplate:
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(3.25)





k11 k12 k13 k14 k15 k16

k21 k22 k23 k24 k25 k26

k31 k32 k33 k34 k35 k36

k41 k42 k43 k44 k45 k46

k51 k52 k53 k54 k55 k56

k61 k62 k63 k64 k65 k66



−ω2



I0 0 −m̃I1 I3 0 0
0 I0 −ñI1 0 I3 0

−m̃I1 −ñI1

[
I0 + (m̃2 + ñ2)I2

]
−m̃I4 −ñI4 0

I3 0 −m̃I4 I5 0 0
0 I3 −ñI4 0 I5 0
0 0 0 0 0 0







um̂n̂
vm̂n̂
wm̂n̂
γxm̂n̂
γym̂n̂
φm̂n̂


=



0
0
0
0
0
0


,

where

k11 = m̃2A11+ñ2A66 + 1
16(m̃2ñ2Ab22 + ñ4Ab11),

k12 = k21 = m̃ñ(A12 +A66)− 1
16(m̃3ñAb22 + m̃ñ3Ab11),

k13 = k31 = −m̃3B11 − m̃ñ2(B12 + 2B66),

k14 = k41 = m̃2A11f + ñ2A66f + 1
16(m̃2ñ2Ab22f + ñ4Ab11f − ñ2F b11f ),

k15 = k51 = m̃ñ(A12f +A66f )− 1
16(m̃3ñAb22f + m̃ñ3Ab11f − m̃ñF b22f ),

k16 = k61 = 1
4m̃ñ

2(Êa22f − Êa11f ) + m̃F̂ e31f ,

k22 = m̃2A66 + ñ2A22 + 1
16(m̃4Ab22 + m̃2ñ2Ab11),

k23 = k32 = −m̃2ñ(B12 + 2B66)− ñ3B22,

k24 = k42 = m̃ñ(A12f +A66f )− 1
16(m̃3ñAb22f + m̃ñ3Ab11f − m̃ñF b11f ),

k25 = k52 = m̃2A66f + ñ2A22f + 1
16(m̃4Ab22f + m̃2ñ2Ab11f − m̃2F b22f ),

k26 = k62 = 1
4m̃

2ñ(Êa11f − Êa22f ) + ñF̂ e32f ,

k33 = m̃4D11 + m̃2ñ2(2D12 + 4D66) + ñ4D22 + 1
4(m̃4 + 2m̃2ñ2 + ñ4)Ab33

+ [m̃2N̄(xx) + ñ2N̄(yy)] + [kw + (m̃2 + ñ2)kG],

k34 = k43 = −m̃3B11f − m̃ñ2(B12f + 2B66f )− 1
8(m̃3 + m̃ñ2)Eb33f ,

k35 = k53 = −m̃2ñ(B12f + 2B66f )− ñ3B22f − 1
8(m̃2ñ+ ñ3)Eb33f ,

k36 = k63 = −(m̃2P̂ e31f + ñ2P̂ e32f )− 1
2(m̃2 + ñ2)F̂ a33f ,

k44 = m̃2H11f + ñ2H66f + J55f + 1
16(m̃2ñ2Hb

22f + ñ4Hb
11f

+ m̃2Jb33f − 2ñ2Lb11f +N b
11f ),

k45 = k54 = m̃ñ(H12f +H66f )− 1
16 [m̃3ñHb

22f + m̃ñ3Hb
11f

− m̃ñ(Jb33f + Lb11f + Lb22f )],
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k46 = k64 = m̃(L̂e31f − J̄e15f ) + 1
4 [−m̃ñ2(K̂a

11f − K̂a
22f ) + m̃(M̂a

11f + M̄a
33f )],

k55 = m̃2H66f + ñ2H22f + J44f + 1
16(m̃4Hb

22f + m̃2ñ2Hb
11f

− 2m̃2Lb22f + ñ2Jb33f +N b
22f ),

k56 = k65 = ñ(L̂e32f − J̄e24f )− 1
4 [m̃2ñ(K̂a

22f − K̂a
11f )− ñ(M̂a

22f + M̄a
33f )],

k66 = − m̃2Ĵη11f − ñ
2Ĵη22f − N̂

η
33f .

Equation (3.25) represents the system of equations of the various CCST-based
SDPTs which we used to evaluate the free vibration behavior of a simply-sup-
ported, porous FG piezoelectric microplate which resting on an elastic medium
is subjected to electric voltages. The plate theories under consideration are
the CCST-based CPT, the CCST-based FSDPT, the CCST-based RSDPT, the
CCST-based SSDPT, the CCST-based ESDPT, and the CCST-based HSDPT.

Equation (3.25) can be rewritten in the following matrix form:

(3.26)
{[

K11 K12

K21 K22

]
− ω2

[
M11 0
0 0

]}{
X1

X2

}
=

{
0
0

}
,

where

K11 =


k11 k12 k13 k14 k15

k21 k22 k23 k24 k25

k31 k32 k33 k34 k35

k41 k42 k43 k44 k45

k51 k52 k53 k54 k55

, K12 =


k16

k26

k36

k46

k56

, K21 =
[
k61 k62 k63 k64 k65

]
,

K22 = [k66], M11 =


I0 0 −m̃I1 I3 0
0 I0 −ñI1 0 I3

−m̃I1 −ñI1

[
I0 + (m̃2 + ñ2)I2

]
−m̃I4 −ñI4

I3 0 −m̃I4 I5 0
0 I3 −ñI4 0 I5

,

X1 =


um̂n̂
vm̂n̂
wm̂n̂
γxm̂n̂
γym̂n̂

, X2 = {φm̂n̂} .

After partitioning, we separate Eq. (3.26) into the following form:[
(K11 −K12K

−1
22 K21)− ω2M11

]
X1 = 0,(3.27)

X2 = −K−1
22 K21X1.(3.28)
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The natural frequencies of the porous FG piezoelectric microplate can be
obtained by setting the determinant of the coefficient matrix represented by
Eq. (3.27) to zero as follows:

(3.29)
∣∣(K11 −K12K

−1
22 K21)− ω2M11

∣∣ = 0.

As a result, five natural frequencies are obtained for a pair of half-wave
numbers with fixed values (m̂, n̂), among which, one corresponds to the flexural
mode, two correspond to the extensional mode, and two corresponds to the shear
mode.

4. Numerical examples

In this section, the various size-dependent SDPTs based on the CCST which
are derived in the preceding section, are used to obtain the Navier-type analytical
solutions for the natural frequencies of simply-supported, porous FG piezoelectric
microplates which resting on the Winkler–Pasternak foundation are subjected to
electric voltages acting on the top and bottom surfaces. Some numerical examples
are presented in the following subsections.

4.1. Porous FG piezoelectric macroplates

The relevant published literature contains no benchmark solutions for the
natural frequencies of simply-supported, porous FG piezoelectric microplates
resting on an elastic medium and subjected to electric voltages. Therefore, we
reduce the unified size-dependent theory based on the CCST for analyzing piezo-
electric microplates to a unified theory based on CCM for analyzing piezoelectric
macroplates by setting the material length scale parameter (l) to zero. Vari-
ous CCM-based plate theories can be reproduced from the unified CCM-based
plate theory, including the CPT, the FSDPT, the RSDPT, the SSDPT, the
ESDPT, and the HSDPT, by incorporating specific functions of f(z) expressed
in Eqs. (2.7)–(2.12) into the formulation of the unified theory based on the CCM.
Barati et al. [62] developed a refined four-variable SDPT (RFV-SDPT) to per-
form an analysis of the coupled electro-mechanical vibration behavior of porous
FG piezoelectric macroplates subjected to electric voltages, by which their solu-
tions are used to assess the accuracy of the reproduced various CCM-based plate
theories. The constituent materials of the piezoelectric macroplates are PZT-4
and PZT-5H piezoceramics, of which their material properties are presented in
Table 1.

Tables 2 and 3 show comparisons of the solutions for the fundamental (i.e., ab-
solute lowest) natural frequencies of simply-supported, perfect FG piezoelectric
macroscale plates and porous FG piezoelectric macroscale plates of Types A-1
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Table 1. The elastic, piezoelectric, dielectric, and flexoelectric coefficients, the
mass density, and the material length scale parameter of the PZT-4 and PZT-5H

materials.

Material properties PZT-4 [62] PZT-5H [62]
c11 = c22 [GPa] 138.499 99.201
c12 [GPa] 77.371 54.016
c13 = c23 [GPa] 73.643 50.778
c33 [GPa] 114.745 86.856
c44 = c55 [GPa] 25.6 21.1
c66 [GPa] 30.6 22.6
e31 = e32 [C ·m−2] −5.2 −7.209
e33 [C ·m−2] 15.08 15.118
e24 = e15 [C ·m−2] 12.72 12.322
η11 = η22 [C2 ·m−2N−1] 1.306 × 10−9 1.53 × 10−9

η33 [C2 ·m−2 ·N−1] 1.115 × 10−9 1.5 × 10−9

fe [C ·m−1] 2 × 10−5 1 × 10−5

ρ [kg ·m−3] 7600 7750
l for the CCST [m] 8.8 × 10−6 8.8 × 10−6

l̂ for the MCST [m] 17.6 × 10−6 17.6 × 10−6

and A-2 for different values of the half-wave number pairs, (m̂, n̂), obtained us-
ing various CCM-based plate theories and the RFV-SDPT [62]. The plates are
composed of PZT-4 and PZT-5H, with the top surface being made entirely of
PZT-4 and the bottom surface being made entirely of PZT-5H. The macroplate
material in the direction of the thickness are assumed to obey a power–Law
distribution of the volume fractions of the constituents, PZT-4 and PZT-5H,
with the through-thickness distribution of the volume fraction of the poros-
ity defined in Eqs. (2.37a), (2.37b), and (2.37c) for the porous piezoelectric
plates of the Types A-1, A-2, and A-3, respectively, and the effective material
properties defined in Eq. (2.38) based on the rule of mixtures. A nondimen-
sional natural frequency parameter is defined following Barati et al. [62] as
ω̄ = ω(L2

x/h)
√
ρPZT−4/(c11)PZT−4 for the purposes of comparison.

In Table 2, the effects of the length-to-thickness ratio (Lx/h) and the porosity
parameter (ψ0) on the fundamental natural frequencies are investigated, with an
applied voltage of zero (V0 = 0); Lx/h = 5, 10 and 20; Lx = Ly; h = 0.01m;
κp = 5; and ψ0 = 0, 0.1 and 0.2. In Table 3, the effects of the material-property
gradient index (κp) and the porosity parameter (ψ0) on the fundamental natural
frequencies are examined, with Lx/h = 100; Lx = Ly; h = 0.01m; V0 = −500V,
0V, and 500V; κp = 0, 1 and 5; and ψ0 = 0, 0.1 and 0.2.

It can be seen in Table 2 that the CPT fails to produce accurate solutions
for the fundamental natural frequencies of the porous piezoelectric macroscale



Free vibration analysis of porous functionally. . . 487

T
ab

le
2.

C
om

p
ar
is
on

s
of

th
e
so
lu
ti
on

s
fo
r
th
e
fu
n
d
am

en
ta
l
fr
eq
u
en

cy
p
ar
am

et
er
s
of

si
m
p
ly
-s
u
p
p
or
te
d
,
p
er
fe
ct

p
ie
zo
el
ec
tr
ic

m
ac
ro
sc
al
e
p
la
te
s
an

d
p
or
ou

s
F
G

p
ie
zo
el
ec
tr
ic

m
ac
ro
sc
al
e
p
la
te
s
of

T
yp

es
A
-1

an
d
A
-2

ob
ta
in
ed

u
si
n
g

th
e
C
P
T
,
va
ri
ou

s
S
D
P
T
s,

an
d
th
e
R
F
V
-S
D
P
T
,
w
it
h
co
n
si
d
er
in
g
th
e
eff

ec
ts

of
th
e
le
n
gt
h
-t
o-
th
ic
kn

es
s
ra
ti
o
an

d
th
e

p
or
os
it
y
vo

lu
m
e
fr
ac
ti
on

.

P
or
os
it
y

d
is
tr
ib
u
ti
on

s
T
h
eo
ri
es

ψ
0

=
0
(P

er
fe
ct
)

ψ
0

=
0
.1

(P
or
ou

s)
ψ
0

=
0
.2

(P
or
ou

s)
L

x
/
h

=
5

L
x
/
h

=
1
0

L
x
/
h

=
2
0

L
x
/
h

=
5

L
x
/
h

=
1
0

L
x
/
h

=
2
0

L
x
/
h

=
5

L
x
/
h

=
1
0

L
x
/
h

=
2
0

T
y
p
e
A
-1

C
P
T

5.
43
90
06

5.
59
85
54

5.
64
03
35

5.
42
15
6(
11
.7
%
)

5.
58
07
4(
3.
6%

)
5.
62
24
2(
0.
1%

)
5.
39
96
2(
11
.9
%
)

5.
55
83
6(
3.
7%

)
5.
59
99
2(
1.
0%

)
F
S
D
P
T

5.
04
63
07

5.
46
80
12

5.
60
48
72

5.
02
89
5(
3.
7%

)
5.
45
02
1(
1.
1%

)
5.
58
69
6(
0.
6%

)
5.
00
72
2(
3.
8%

)
5.
42
78
8(
1.
3%

)
5.
56
44
7(
0.
4%

)
R
S
D
P
T

5.
04
11
80

5.
46
59
53

5.
60
42
78

5.
02
35
6(
3.
5%

)
5.
44
80
1(
1.
1%

)
5.
58
63
2(
0.
6%

)
5.
00
10
7(
3.
7%

)
5.
42
54
0(
1.
2%

)
5.
56
37
6(
0.
4%

)
S
S
D
P
T

5.
04
15
11

5.
46
60
28

5.
60
42
95

5.
02
35
6(
3.
5%

)
5.
44
80
1(
1.
1%

)
5.
58
63
2(
0.
6%

)
5.
00
10
7(
3.
7%

)
5.
42
54
0(
1.
2%

)
5.
56
37
6(
0.
4%

)
E
S
D
P
T

5.
04
29
22

5.
46
64
98

5.
60
44
24

5.
02
49
5(
3.
6%

)
5.
44
84
7(
1.
1%

)
5.
58
64
5(
0.
6%

)
5.
00
24
3(
3.
7%

)
5.
42
58
6(
1.
2%

)
5.
56
38
8(
0.
4%

)
H
S
D
P
T

5.
04
12
00

5.
46
59
65

5.
60
42
82

5.
02
32
8(
3.
5%

)
5.
44
79
6(
1.
1%

)
5.
58
63
1(
0.
6%

)
5.
00
08
3(
3.
7%

)
5.
42
53
7(
1.
2%

)
5.
56
37
5(
0.
4%

)
R
F
V
-S
D
P
T

[6
2]

N
A

N
A

N
A

4.
85
15
7

5.
38
83
7

5.
61
86
6

4.
82
43
7

5.
35
97
8

5.
54
37
6

T
y
p
e
A
-2

C
P
T

5.
43
90
06

5.
59
85
54

5.
64
03
35

5.
50
22
7(
12
.5
%
)

5.
66
59
8(
3.
8%

)
5.
70
88
8(
0.
9%

)
5.
57
14
2(
13
.6
%
)

5.
73
98
3(
4.
1%

)
5.
78
40
0(
1.
0%

)
F
S
D
P
T

5.
04
63
07

5.
46
80
12

5.
60
48
72

5.
07
84
5(
3.
9%

)
5.
52
45
4(
1.
2%

)
5.
67
04
0(
0.
2%

)
5.
11
21
9(
4.
3%

)
5.
58
58
8(
1.
4%

)
5.
74
20
4(
0.
3%

)
R
S
D
P
T

5.
04
11
80

5.
46
59
53

5.
60
42
78

5.
06
40
3(
3.
6%

)
5.
51
90
9(
1.
1%

)
5.
66
88
5(
0.
2%

)
5.
08
54
7(
3.
7%

)
5.
57
58
6(
1.
2%

)
5.
73
91
9(
0.
2%

)
S
S
D
P
T

5.
04
15
11

5.
46
60
28

5.
60
42
95

5.
06
36
1(
3.
6%

)
5.
51
88
9(
1.
1%

)
5.
66
87
9(
0.
2%

)
5.
08
40
0(
3.
7%

)
5.
57
52
7(
1.
2%

)
5.
73
90
2(
0.
2%

)
E
S
D
P
T

5.
04
29
22

5.
46
64
98

5.
60
44
24

5.
06
43
7(
3.
6%

)
5.
51
91
3(
1.
1%

)
5.
66
88
5(
0.
2%

)
5.
08
38
2(
3.
7%

)
5.
57
51
7(
1.
2%

)
5.
73
89
9(
0.
2%

)
H
S
D
P
T

5.
04
12
00

5.
46
59
65

5.
60
42
82

5.
06
41
2(
3.
6%

)
5.
51
91
3(
1.
1%

)
5.
66
88
6(
0.
2%

)
5.
08
56
6(
3.
7%

)
5.
57
59
3(
1.
2%

)
5.
73
92
1(
0.
2%

)
R
F
V
-S
D
P
T

[6
2]

N
A

N
A

N
A

4.
88
87
4

5.
45
95
7

5.
65
77
1

4.
90
22
8

5.
51
14
4

5.
72
56
0

T
h
e
n
u
m
b
er

in
th
e
p
ar
en
th
es
es

re
p
re
se
n
ts

th
e
re
la
ti
ve

er
ro
rs

b
et
w
ee
n
th
e
so
lu
ti
on

s
ob

ta
in
ed

u
si
n
g
th
e
C
C
S
T
-b
as
ed

p
la
te

th
eo
ri
es

an
d
th
os
e
ob

ta
in
ed

u
si
n
g
th
e

R
F
V
-S
D
P
T

[6
2]
.



488 C.-P. Wu, E.-L. Lin
T
ab

le
3.

C
om

p
ar
is
on

s
of

th
e
so
lu
ti
on

s
fo
r
th
e
fu
n
d
am

en
ta
l
fr
eq
u
en

cy
p
ar
am

et
er
s
of

si
m
p
ly
-s
u
p
p
or
te
d
,
p
er
fe
ct

p
ie
zo
el
ec
tr
ic

m
ac
ro
sc
al
e
p
la
te
s
an

d
p
or
ou

s
F
G

p
ie
zo
el
ec
tr
ic

m
ac
ro
sc
al
e
p
la
te
s
of

T
yp

es
A
-1

an
d
A
-2

ob
ta
in
ed

u
si
n
g
th
e
C
P
T
,
va
ri
ou

s
S
D
P
T
s,

an
d
th
e
R
F
V
-S
D
P
T
,
w
it
h
co
n
si
d
er
in
g
th
e
eff

ec
ts

of
th
e
m
at
er
ia
l-
p
ro
p
er
ty

gr
ad

ie
nt

in
d
ex

an
d
th
e
p
or
os
it
y
vo
lu
m
e
fr
ac
ti
on

.

P
or
os
it
y

d
is
tr
ib
u
ti
on

s
E
le
ct
ri
c

vo
lt
ag
es
,
V
0

T
h
eo
ri
es

ψ
0

=
0
(P

er
fe
ct
)

ψ
0

=
0
.2

(P
or
ou

s)
κ
p

=
0
.2

κ
p

=
1

κ
p

=
5

κ
p

=
0
.2

κ
p

=
1

κ
p

=
5

T
y
p
e
A
-1

−
5
0
0
V

C
P
T

6.
19
35
8(
0.
19
%
)
5.
99
22
6(
0.
18
%
)
5.
84
71
1(
0.
13
%
)
6.
24
36
5(
0.
07
%
)
5.
98
90
7(
0.
03
%
)
5.
80
88
4(
0.
07
%
)

F
S
D
P
T

6.
19
21
5(
0.
22
%
)
5.
99
08
6(
0.
20
%
)
5.
84
57
0(
0.
15
%
)
6.
24
22
1(
0.
09
%
)
5.
98
76
7(
0.
06
%
)
5.
80
74
3(
0.
04
%
)

R
S
D
P
T

6.
19
21
5(
0.
22
%
)
5.
99
08
6(
0.
20
%
)
5.
84
56
8(
0.
15
%
)
6.
24
22
2(
0.
09
%
)
5.
98
76
7(
0.
06
%
)
5.
80
74
0(
0.
04
%
)

S
S
D
P
T

6.
19
21
5(
0.
22
%
)
5.
99
08
6(
0.
20
%
)
5.
84
56
8(
0.
15
%
)
6.
24
22
2(
0.
09
%
)
5.
98
76
7(
0.
06
%
)
5.
80
74
0(
0.
04
%
)

E
S
D
P
T

6.
19
21
5(
0.
22
%
)
5.
99
08
6(
0.
20
%
)
5.
84
56
8(
0.
15
%
)
6.
24
22
2(
0.
09
%
)
5.
98
76
8(
0.
06
%
)
5.
80
74
0(
0.
04
%
)

H
S
D
P
T

6.
19
21
5(
0.
22
%
)
5.
99
08
6(
0.
20
%
)
5.
84
56
8(
0.
15
%
)
6.
24
22
2(
0.
09
%
)
5.
98
76
7(
0.
06
%
)
5.
80
74
0(
0.
04
%
)

R
F
V
-S
D
P
T

[6
2]

6.
20
55
5

6.
00
29
4

5.
85
44
4

6.
24
81
4

5.
99
10
3

5.
80
50
3

T
y
p
e
A
-1

0
V

C
P
T

6.
01
82
7(
0.
20
%
)
5.
80
73
5(
0.
18
%
)
5.
65
38
7(
0.
13
%
)
6.
07
06
4(
0.
07
%
)
5.
80
40
5(
0.
03
%
)
5.
61
33
9(
0.
07
%
)

F
S
D
P
T

6.
01
68
0(
0.
22
%
)
5.
80
59
1(
0.
21
%
)
5.
65
24
2(
0.
16
%
)
6.
06
91
6(
0.
10
%
)
5.
80
26
2(
0.
05
%
)
5.
61
19
3(
0.
04
%
)

R
S
D
P
T

6.
01
68
0(
0.
22
%
)
5.
80
59
0(
0.
21
%
)
5.
65
23
9(
0.
16
%
)
6.
06
91
6(
0.
10
%
)
5.
80
26
1(
0.
05
%
)
5.
61
19
0(
0.
04
%
)

S
S
D
P
T

6.
01
68
0(
0.
22
%
)
5.
80
59
0(
0.
21
%
)
5.
65
23
9(
0.
16
%
)
6.
06
91
7(
0.
10
%
)
5.
80
26
1(
0.
05
%
)
5.
61
19
0(
0.
04
%
)

E
S
D
P
T

6.
01
68
0(
0.
22
%
)
5.
80
59
1(
0.
21
%
)
5.
65
24
0(
0.
16
%
)
6.
06
91
7(
0.
10
%
)
5.
80
26
2(
0.
05
%
)
5.
61
19
0(
0.
04
%
)

H
S
D
P
T

6.
01
68
0(
0.
22
%
)
5.
80
59
0(
0.
21
%
)
5.
65
23
9(
0.
16
%
)
6.
06
91
6(
0.
10
%
)
5.
80
26
1(
0.
05
%
)
5.
61
19
0(
0.
04
%
)

R
F
V
-S
D
P
T

[6
2]

6.
03
02
7

5.
81
78
7

5.
66
12
0

6.
07
51
2

5.
80
57
1

5.
60
95
4

T
y
p
e
A
-1

5
0
0
V

C
P
T

5.
83
77
0(
0.
21
%
)
5.
61
63
5(
0.
18
%
)
5.
45
38
(0
.1
3%

)
5.
89
25
5(
0.
08
%
)
5.
61
29
4(
0.
02
%
)
5.
41
08
8(
0.
07
%
)

F
S
D
P
T

5.
83
61
8(
0.
23
%
)
5.
61
48
6(
0.
21
%
)
5.
45
22
8(
0.
16
%
)
5.
89
10
3(
0.
10
%
)
5.
61
14
6(
0.
05
%
)
5.
40
93
7(
0.
04
%
)

R
S
D
P
T

5.
83
61
8(
0.
23
%
)
5.
61
48
5(
0.
21
%
)
5.
45
22
6(
0.
16
%
)
5.
89
10
3(
0.
10
%
)
5.
61
14
5(
0.
05
%
)
5.
40
93
4(
0.
04
%
)

S
S
D
P
T

5.
83
61
8(
0.
23
%
)
5.
61
48
5(
0.
21
%
)
5.
45
22
6(
0.
16
%
)
5.
89
10
3(
0.
10
%
)
5.
61
14
5(
0.
05
%
)
5.
40
93
4(
0.
04
%
)

E
S
D
P
T

5.
83
61
9(
0.
23
%
)
5.
61
48
6(
0.
21
%
)
5.
45
22
6(
0.
16
%
)
5.
89
10
4(
0.
10
%
)
5.
61
14
6(
0.
05
%
)
5.
40
93
4(
0.
04
%
)

H
S
D
P
T

5.
83
61
8(
0.
23
%
)
5.
61
48
5(
0.
21
%
)
5.
45
22
6(
0.
16
%
)
5.
89
10
3(
0.
10
%
)
5.
61
14
5(
0.
05
%
)
5.
40
93
4(
0.
04
%
)

R
F
V
-S
D
P
T

[6
2]

5.
84
97
4

5.
62
67
1

5.
46
11
3

5.
89
70
4

5.
61
42
9

5.
40
69
8

T
y
p
e
A
-2

−
5
0
0
V

C
P
T

6.
19
35
8(
0.
19
%
)
5.
99
22
6(
0.
18
%
)
5.
84
71
1(
0.
13
%
)
6.
36
69
7(
0.
16
%
)
6.
14
58
9(
0.
15
%
)
5.
98
72
7(
0.
07
%
)

F
S
D
P
T

6.
19
21
5(
0.
22
%
)
5.
99
08
6(
0.
20
%
)
5.
84
57
0(
0.
15
%
)
6.
36
52
8(
0.
19
%
)
6.
14
42
4(
0.
17
%
)
5.
98
56
0(
0.
10
%
)

R
S
D
P
T

6.
19
21
5(
0.
22
%
)
5.
99
08
6(
0.
20
%
)
5.
84
56
8(
0.
15
%
)
6.
36
52
1(
0.
19
%
)
6.
14
41
6(
0.
17
%
)
5.
98
54
8(
0.
10
%
)

S
S
D
P
T

6.
19
21
5(
0.
22
%
)
5.
99
08
6(
0.
20
%
)
5.
84
56
8(
0.
15
%
)
6.
36
52
0(
0.
19
%
)
6.
14
41
6(
0.
17
%
)
5.
98
54
7(
0.
10
%
)

E
S
D
P
T

6.
19
21
5(
0.
22
%
)
5.
99
08
6(
0.
20
%
)
5.
84
56
8(
0.
15
%
)
6.
36
52
0(
0.
19
%
)
6.
14
41
6(
0.
17
%
)
5.
98
54
7(
0.
10
%
)

H
S
D
P
T

6.
19
21
5(
0.
22
%
)
5.
99
08
6(
0.
20
%
)
5.
84
56
8(
0.
15
%
)
6.
36
52
1(
0.
19
%
)
6.
14
41
6(
0.
17
%
)
5.
98
54
8(
0.
10
%
)

R
F
V
-S
D
P
T

[6
2]

6.
20
55
5

6.
00
29
4

5.
85
44
4

6.
37
71
3

6.
15
48
7

5.
99
17
2

T
y
p
e
A
-2

0
V

C
P
T

6.
01
82
7(
0.
20
%
)
5.
80
73
5(
0.
18
%
)
5.
65
38
7(
0.
13
%
)
6.
19
69
4(
0.
16
%
)
5.
96
57
5(
0.
15
%
)
5.
79
83
2(
0.
08
%
)

F
S
D
P
T

6.
01
68
0(
0.
22
%
)
5.
80
59
1(
0.
21
%
)
5.
65
24
2(
0.
16
%
)
6.
19
52
0(
0.
19
%
)
5.
96
40
4(
0.
18
%
)
5.
79
65
9(
0.
11
%
)

R
S
D
P
T

6.
01
68
0(
0.
22
%
)
5.
80
59
0(
0.
21
%
)
5.
65
23
9(
0.
16
%
)
6.
19
51
3(
0.
19
%
)
5.
96
39
6(
0.
18
%
)
5.
79
64
7(
0.
11
%
)

S
S
D
P
T

6.
01
68
0(
0.
22
%
)
5.
80
59
0(
0.
21
%
)
5.
65
23
9(
0.
16
%
)
6.
19
51
2(
0.
19
%
)
5.
96
39
6(
0.
18
%
)
5.
79
64
7(
0.
11
%
)

E
S
D
P
T

6.
01
68
0(
0.
22
%
)
5.
80
59
1(
0.
21
%
)
5.
65
24
0(
0.
16
%
)
6.
19
51
3(
0.
19
%
)
5.
96
39
6(
0.
18
%
)
5.
79
64
7(
0.
11
%
)

H
S
D
P
T

6.
01
68
0(
0.
22
%
)
5.
80
59
0(
0.
21
%
)
5.
65
23
9(
0.
16
%
)
6.
19
51
3(
0.
19
%
)
5.
96
39
6(
0.
18
%
)
5.
79
64
7(
0.
11
%
)

R
F
V
-S
D
P
T

[6
2]

6.
03
02
7

5.
81
78
7

5.
66
12
0

6.
20
71
5

5.
97
45
5

5.
80
28
2

T
y
p
e
A
-2

5
0
0
V

C
P
T

5.
83
77
0(
0.
21
%
)
5.
61
63
5(
0.
18
%
)
5.
45
38
0(
0.
13
%
)
6.
02
21
1(
0.
17
%
)
5.
77
99
9(
0.
15
%
)
5.
60
30
1(
0.
08
%
)

F
S
D
P
T

5.
83
61
8(
0.
23
%
)
5.
61
48
6(
0.
21
%
)
5.
45
22
8(
0.
16
%
)
6.
02
03
2(
0.
20
%
)
5.
77
82
3(
0.
18
%
)
5.
60
12
2(
0.
11
%
)

R
S
D
P
T

5.
83
61
8(
0.
23
%
)
5.
61
48
5(
0.
21
%
)
5.
45
22
6(
0.
16
%
)
6.
02
02
5(
0.
20
%
)
5.
77
81
4(
0.
18
%
)
5.
60
10
9(
0.
12
%
)

S
S
D
P
T

5.
83
61
8(
0.
23
%
)
5.
61
48
5(
0.
21
%
)
5.
45
22
6(
0.
16
%
)
6.
02
02
4(
0.
20
%
)
5.
77
81
4(
0.
18
%
)
5.
60
10
9(
0.
12
%
)

E
S
D
P
T

5.
83
61
9(
0.
23
%
)
5.
61
48
6(
0.
21
%
)
5.
45
22
6(
0.
16
%
)
6.
02
02
4(
0.
20
%
)
5.
77
81
4(
0.
18
%
)
5.
60
10
8(
0.
12
%
)

H
S
D
P
T

5.
83
61
8(
0.
23
%
)
5.
61
48
5(
0.
21
%
)
5.
45
22
6(
0.
16
%
)
6.
02
02
5(
0.
20
%
)
5.
77
81
5(
0.
18
%
)
5.
60
10
9(
0.
12
%
)

R
F
V
-S
D
P
T

[6
2]

5.
84
97
4

5.
62
67
1

5.
46
11
3

6.
03
23
8

5.
78
86
1

5.
60
75
6

T
h
e
n
u
m
b
er

in
th
e
p
ar
en
th
es
es

re
p
re
se
n
ts

th
e
re
la
ti
ve

er
ro
rs

b
et
w
ee
n
th
e
so
lu
ti
on

s
ob

ta
in
ed

u
si
n
g
th
e
C
C
S
T
-b
as
ed

p
la
te

th
eo
ri
es

an
d

th
os
e
ob

ta
in
ed

u
si
n
g
th
e
R
F
V
-S
D
P
T

[6
2]
.



Free vibration analysis of porous functionally. . . 489

plates when the value of the Lx/h ratio is equal to or less than 10. The so-
lutions obtained using the CPT are always greater than those obtained using
various SDPTs. This is due to the fact that the effect of shear deformations is
not considered by the CPT, which results in an increase in the overall stiffness of
the porous FG piezoelectric plates, which in turn leads to overemphasizing their
fundamental natural frequencies. For example, the relative error between the
solutions for the fundamental natural frequencies obtained using the CPT and
those obtained using the RFV-SDPT is 1.0%, 3.7%, and 11.9% when Lx/h = 20
(thin plates), Lx/h = 10 (moderately thick plates), and Lx/h = 5 (thick plates),
respectively, in the case of Type A-1 porous FG piezoelectric plates, and 1.0%,
4.1%, and 13.7%, respectively, in the case of Type A-2 porous FG piezoelectric
plates, with a porosity parameter of ψ0 = 0.2. When compared with the results
of the fundamental natural frequencies obtained using the RFV-SDPT, the CPT
and various SDPTs can be arranged in the following descending order of accu-
racy from the most accurate to the least accurate: (RSDPT, SSDPT, ESDPT,
HSDPT) > FSDPT > CPT. The results also show that the solutions for the
fundamental natural frequencies of the porous piezoelectric macroscale plates
obtained using the RSDPT, the SSDPT, the ESDPT, and the HSDPT are in
excellent agreement with those obtained using the RFV-SDPT for thin plates
(Lx/h = 20) and moderately thick plates (Lx/h = 10). The disparity between
them increases as the thickness of the porous FG piezoelectric plates increases
because the effect of the transverse normal strain is considered by the RFV-
SDPT but not considered by the other models. This indicates that the thicker
the plates are, the more significant the effect of the transverse normal strain on
the fundamental natural frequencies is. For example, the relative error between
the solutions for the fundamental natural frequencies obtained using the RS-
DPT and those obtained using the RFV-SDPT is 0.4%, 1.2%, and 3.7% when
Lx/h = 20, 10 and 5, respectively, in the case of Type A-1 porous FG piezo-
electric plates, and 0.3%, 1.2%, and 3.7%, respectively, in the case of Type A-2
porous FG piezoelectric plates, with a porosity parameter of ψ0 = 0.2. In addi-
tion, the fundamental natural frequencies of the perfect FG piezoelectric plates,
when ψ0 = 0, are not always greater than those of the porous FG piezoelectric
plates, when ψ0 6= 0. The disparity between the solutions for the fundamen-
tal natural frequencies of the perfect FG piezoelectric plates and those for the
porous FG piezoelectric plates increases as the value of the porosity parameters
increases. This is because a high value of the porosity parameter is associated
with a low overall stiffness of the plate, which then vibrates at lower fundamental
natural frequencies. On the other hand, when the value of the porosity parameter
is high, the mass moments of inertias are low. This causes the plate to vibrate
at higher fundamental natural frequencies. If the increase in the fundamental
natural frequencies resulting from low mass moments of inertias is more signifi-
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cant than their decrease caused by a high overall plate stiffness, the fundamental
natural frequencies of porous FG piezoelectric plates are greater than those of
perfect FG piezoelectric plates, and vice versa.

It can be seen in Table 3 that when a positive electric voltage, |V0|, is applied
to the top surface of the plate and a negative electric voltage, −|V0|, is applied
to its bottom surface, a set of in-plane stresses which are initially compressive
is induced, leading to a decrease in the overall stiffness of the plate and in turn
decreasing the fundamental natural frequencies. Conversely, when a negative
electric voltage, −|V0|, is applied to the top surface of the plate and a positive
electric voltage, |V0|, is applied to the bottom surface of the plate, a set of in-
plane stresses which are initially tensional is induced, leading to an increase in
the overall stiffness of the plate and in turn increasing the fundamental natural
frequencies. Again, the results also show that in the cases of Lx/h = 100 (very
thin plates), the solutions for the fundamental natural frequencies of the porous
FG piezoelectric plates obtained using the CPT and the various SDPTs which
were reproduced from the unified size-dependent plate theory developed in this
study confirm very well with those obtained using the RFV-SDPT.

4.2. Porous FG elastic microplates

In this section, the CCST-based unified size-dependent theory for analyz-
ing piezoelectric microplates is reduced to that for analyzing elastic microplates
by setting the piezoelectric and flexoelectric coefficients to zero for the purpose
comparison. Karamanli and Aydogdu [63] analyzed the free vibration char-
acteristics of simply-supported, porous FG elastic microplates using a transverse
shear and normal deformation plate theory (TSNDPT) based on the MCST.
Their solutions for the fundamental natural frequencies are used to validate the
accuracy of the reduced size-dependent SDPTs based on the CCST which are
discussed in the preceding subsection and are applied in this subsection to the
analysis of elastic microplates.

Table 4 presents a comparison of the solutions for the fundamental natu-
ral frequencies of simply-supported, Type A-3 porous FG elastic microplates
obtained using both a number of size-dependent SDPTs based on the CCST
and the size-dependent TSNDPT based on the MCST, with an examination of
the effects of the length-to-thickness ratio, the material length scale parameter-
to-thickness ratio, and the porosity gradient index on the fundamental natural
frequencies. The microplates are composed of silicon carbide (SiC) (ceramic ma-
terial) and aluminum (Al) (metal material). The top surface is made completely
of SiC, and the bottom surface is made completely of Al. The microplate mate-
rial in the direction of the thickness is assumed to obey a power–law distribution
of the volume fractions of the constituents, with the through-thickness distribu-
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tion of the material properties defined in Eq. (2.38) and the through-thickness
distribution of the volume fraction of the porosity defined in Eq. (2.37c). The
geometric parameters are set at Lx/h = 10; and Lx = Ly. The porosity parame-
ter is assigned the values of ψ0 = 0, 0.05 and 0.1. The material-property gradient
index is considered as κp = 1, 2 and 5. The material properties of SiC and Al
are given as follows:

For the SiC,

(4.1a)
ESiC = Et = 427GPa, υSiC = υt = 0.17,

ρSiC = ρt = 3100 kg/m3, l̂ = 2l = 15× 10−6 m;

for the Al,

(4.1b)
EAl = Eb = 70GPa, υAl = υb = 0.3,

ρAl = ρb = 2702 kg/m3, l̂ = 2l = 15× 10−6 m,

where l̂ denotes the value of the material length scale parameter of the MCST.
This value is two times that of the CCST because in the case of the former
theory, the relationship between the symmetric couple stress tensor and the
symmetric part of the curvature tensor was defined as mij = 2Gl̂2χij by Yang
et al. [20], whereas in the latter theory, Hadjesfandiari and Dargush [53, 54]
defined the relationship between the skew-symmetric couple stress tensor and
the skew-symmetric part of the curvature tensor as µij = −8Gl2κij .

A nondimensional natural frequency parameter is defined as

ω̄ = ω(L2
x/h)

√
ρSiC/ESiC

following the work of Karamanli and Aydogdu [63] for the purposes of com-
parison.

It can be seen in Table 4 that the solutions for the fundamental natural fre-
quencies of simply-supported, Type A-3 porous FG elastic microplates obtained
using the reduced various size-dependent SDPTs (i.e., the CCST-based RSDPT,
the CCST-based SSDPT, the CCST-based ESDPT, and the CCST-based HS-
DPT) are in excellent agreement with those obtained using the size-dependent
MCST-based TSNDPT. The results also show that the fundamental natural fre-
quencies increase as the l̂/h ratio increases and as the Lx/h ratio decreases,
which indicates that both an increase in the value of the l̂/h ratio and a decrease
in the value of the Lx/h ratio enhance the overall stiffness of the microplates,
which in turn increases the fundamental natural frequency of its vibration.

4.3. Porous FG piezoelectric microplates

In this section, we conduct a parameter study to assess the significance of
some key effects on the natural frequencies of simply-supported, porous FG
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piezoelectric microplates of Types B-1, B-2, B-3, and B-4 which resting on the
Winkler–Pasternak foundation are subjected to electric voltages acting on the
top and bottom surfaces. The effects in questions include that of the mate-
rial length scale parameter, the length-to-thickness ratio, the material-property
gradient index, different values of the applied voltages, the porosity parame-
ter, different porosity distribution patterns, the Winkler spring constant, and
the shear modulus of the medium surrounding the microplate. The functions
of the volume fractions of the porosity in the direction of the thickness for
porous FG piezoelectric microplates of Types B-1, B-2, B-3, and B-4 are given
in Eqs. (2.39a)–(2.39d), respectively, and their effective material properties are
estimated using Eq. (2.40). In order to provide a clear picture of the varia-
tions in porosity for these four types of porous microplates, we present the non-
dimensional volume fractions of the porosity in the direction of the thickness
for each type in Fig. 2. It can be seen in Fig. 2 that the pores are uniformly
distributed in the thickness direction of the microplate for Type B-1, and they
concentrate around the mid-plane of the microplate for Type B-2; whereas, the
pores concentrate around the bottom surface and around the top surface of the
microplate for Type B-3 and Type B-4, respectively.

Fig. 2. The through-thickness distributions of the non-dimensional volume fraction of the
porosity for porous piezoelectric microplates of Types B-1, B-2, B-3, and B-4.

Tables 5 and 6 show the lowest and the second lowest natural frequencies,
respectively, of simply-supported, perfect FG piezoelectric microplates and Type
A-2 porous FG piezoelectric microplates subjected to electric voltages obtained
using the CCST-based RSDPT for the following specific values of half-wave num-
ber pairs: (m̂, n̂) = (1, 1), (1, 2), (1, 3), (2, 2), (2, 3) and (3, 3). The microplates
are composed of PZT-4 and PZT-5H piezoelectric materials, with the top sur-
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face composed entirely of PZT-4 and the bottom surface composed entirely of
PZT-5H. The microplate material in the direction of the thickness is assumed to
obey a power–law distribution of the volume fractions of the constituents, PZT-
4 and PZT-5H. The through-thickness distribution of the material properties is
defined in Eq. (2.38) and that of the volume fractions of the porosity is defined
in Eq. (2.37b). The material properties of the PZT-4 and PZT-5H are presented
in Table 1, in which a nondimensional natural frequency parameter is defined as
ω̄ = ω(L2

x/h)
√
ρPZT-4/(c11)PZT-4.

The geometric parameters of the porous piezoelectric microplates are:
Lx/h = 10, Lx = Ly, κp = 1 and 5, ψ0 = 0 and 0.2. The values of the l̂/h
ratio are l̂/h = 0.4 and 0.8, where l̂ = 17.6µm and l = 8.8µm. The pairs of the
applied voltages areV0 = −500V, 0V and 500V.

Tables 5 and 6 show the solutions for the lowest and the second lowest nat-
ural frequencies, respectively, which correspond to the flexural and extensional
vibration modes, respectively, of simply-supported, perfect FG piezoelectric mi-
croplates and Type A-2 porous FG piezoelectric microplates for different values
of half-wave number pairs obtained using the CCST-based RSDPT. Again, it
can be seen in these tables that both frequencies increase as the l̂/h ratio in-
creases and as the value of κp decreases. When a positive electric voltage, |V0|,
is applied to the top surface of the microplate and a negative electric voltage,
−|V0|, is applied to its bottom surface, the lowest and second lowest natural fre-
quencies decrease. Conversely, when a negative electric voltage, −|V0|, is applied
to the top surface of the plate and a positive electric voltage, |V0|, is applied to
its bottom surface, the lowest and the second lowest natural frequencies increase.
It should be noted that the impacts of the material length scale parameter, the
material-property gradient index, and the values of the applied voltages on the
natural frequencies in the flexural vibration mode are much more significant
than they are on the natural frequencies in the extensional vibration mode. The
absolute lowest (fundamental) natural frequencies always occur when the half-
wave number pair is (m̂, n̂) = (1, 1). Some solutions show a superscript “∗” for
those of the half-wave number pair of (m̂, n̂) = (3, 3), as shown in Tables 5
and 6, which means that the lowest natural frequencies correspond to the ex-
tensional vibration mode and the second lowest natural frequencies correspond
to the flexural vibration mode, which is the exact opposite of the cases when
(m̂, n̂) 6= (3, 3).

Figure 3 shows the mode shapes for the flexural vibration modes, respectively,
of the porous FG piezoelectric microplate in the xy-plane, for the following spe-
cific values of half-wave number pairs: (m̂, n̂) = (1, 1), (1, 2), (1, 3), (2, 2), (2, 3),
and (3, 3), when Lx/h = 10, Lx = Ly, ψ0 = 0.25, κp = 2, V0 = 0 V, l̂/h = 0.4

(i.e. l/h = 0.2), and l̂ = 17.6× 10−6 m (l = 8.8× 10−6 m).
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a) b)

c) d)

e) f)

Fig. 3. Distributions of the modal deflection uz(x, y, 0) for the flexural vibration modes of
the porous FG piezoelectric microplate in the xy-plane, with specific values of half-wave
number pairs: a) (m̂, n̂) = (1, 1), b) (m̂, n̂) = (1, 2), c) (m̂, n̂) = (1, 3), d) (m̂, n̂) = (2, 2),
e) (m̂, n̂) = (2, 3), f) (m̂, n̂) = (3, 3), where all of the displacements of each mode in each

figure occur on the z axis.

Figure 4 shows the variations in the lowest natural frequencies of simply-
supported, porous FG piezoelectric microplates of Types B-1, B-2, B-3, and B-4,
with the values of applied voltages (V0), when Lx/h = 10, Lx = Ly, V0 varys
from −500V to 500V, ψ0 = 0.5, κp = 2, l/h = 0–0.5, and l = 8.8 × 10−6 m,
and (m̂, n̂) = (1, 1). It can be seen in Fig. 4 that the lowest natural frequencies
of porous FG piezoelectric microplates decrease as the applied voltages V0 in-
crease. This is because when a pair of voltages, |V0| and −|V0|, are applied to
the top and bottom surfaces of the microplate, respectively, an initial state of
compressive in-plane stress is induced, causing a decrease in the overall stiffness
of the microplate which in turn decreases the lowest natural frequencies of its
vibrations (see Eqs. (2.49) and (2.50)). In addition, when the applied voltages
increase, the lowest natural frequencies become monotonically smaller, and their
relationship approximates a linear function with a negative slope. For different
types of porosity distributions, the impact of the porosity parameter on the low-
est natural frequencies can be displayed in the following descending order from
the most to the least significant: Type B-2 > Type B-1 > (Type B-3, Type B-4).
This can be explained by the fact that when the porosity parameters of various
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Fig. 4. Variations in the lowest natural frequencies of porous FG piezoelectric microplates of
Types B-1, B-2, B-3, and B-4 with the applied voltages V0 of different values.

porous microplates are the same, the more the pores are concentrated in the
mid-plane of each microplate, which means that its mass is distributed farther
away from its mid-plane, the higher its overall stiffness is, which in turn increases
its lowest frequency parameters.

Figure 5 shows the variations in the lowest natural frequencies of simply-
supported, porous FG piezoelectric microplates of Types B-1, B-2, B-3, and B-4,
with the l/h ratio, when Lx/h = 10, Lx = Ly, V0 = 0, ψ0 = 0.5, κp = 2,

Fig. 5. Variations in the lowest natural frequencies of types B-1, B-2, B-3, and B-4 porous
FG piezoelectric microplates with the l/h ratio.
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l/h = 0–0.5, and l = 8.8 × 10−6 m, and (m̂, n̂) = (1, 1). It can be seen in Fig. 5
that the lowest natural frequencies increase as the l/h ratio increases, which
indicates that an increase in the material length scale parameter enhances the
overall stiffness of the microplate, which in turn increases its lowest natural
frequencies. Again, the lowest natural frequencies for porous piezoelectric mi-
croplates of Types B-1, B-2, B-3, B-4 are presented in descending order from the
highest to the lowest value: Type B-2 > Type B-1 > (Type B-3, Type B-4).

Figure 6 shows that the lowest natural frequencies of simply-supported,
porous FG piezoelectric microplates of Types B-1, B-2, B-3, and B-4 vary ac-
cording to changes in the material-property gradient index κp, when Lx/h = 10,
Lx = Ly, V0 = 0, κp = 0 − 10, l/h = 0.2, l = 8.8 × 10−6 m, ψ0 = 0.5, and
(m̂, n̂) = (1, 1). It can be seen in Fig. 6 that the lowest natural frequencies of
a porous FG piezoelectric microplate decrease as the value of κp becomes greater.
On the one hand, this indicates that an increase in the value of κp is associated
with both an increase in the volume fraction of the softer material, PZT-5H and
a decrease in that of the stiffer material, PZT-4, the result is a lower overall
stiffness of the microplates. On the other hand, when an increase in the value of
κp is linked to both an increase in the volume fraction of the heavier material,
PZT-5H, and a decrease in that of the lighter material, PZT-4, the result is
a higher overall mass moment of inertia of the microplates. Both a decrease in
the overall stiffness of the microplate and an increase in the overall mass moment
of inertia of the microplates cause a decrease in its lowest natural frequencies.

Fig. 6. Variations in the lowest natural frequencies of porous FG piezoelectric microplates of
Types B-1, B-2, B-3, and B-4 with the material-property gradient index κp.

The lowest natural frequencies of simply-supported, Type B-2 FG porous
piezoelectric microplates can be seen to vary in Fig. 7(a) according to the di-
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mensionless Winkler stiffnessKW and in Fig. 7(b) according to the dimensionless
shear modulusKG of the medium surrounding the microplate, respectively, when
KW = kwEh

3/L4
x and KG = kGEh

3/L2
x. The relevant geometric and material

parameters are Lx = Ly, Lx/h = 10 and 20, l/h = 0.2, l = 8.8 × 10−6 m,
V0 = 0, ψ0 = 0 and 0.2, κp = 2, and (m̂, n̂) = (1, 1). In Fig. 7(a), KG is
assigned the value of zero, and the values of KW changes from 0 to 100. In
Fig. 7(b), KW is assigned to the value of 10, and the values of KG changes
from 0 to 10.

a) b)

Fig. 7. Variations in the lowest natural frequencies of simply-supported, Type B-2 FG
porous piezoelectric microplates with (a) the dimensionless Winkler stiffness KW and (b) the

dimensionless shear modulus KG of the surrounding medium, respectively, when
KW = kwEh

3/L4
x and KG = kGEh

3/L2
x.

It can be seen in Fig. 7 that the lowest natural frequencies of simply-sup-
ported, porous FG piezoelectric microplates increase as the values ofKW andKG

increase, which indicates that the surrounding medium makes the microplates
stiffer. The results show that the increase in KW and KG associated with the
increase in the lowest frequencies when Lx/h = 10 is much higher than that
occur when Lx/h = 20, which indicates that the interactive effect between the
porous piezoelectric microplates and their surrounding medium is more signifi-
cant for the thick plates than it is for thin plates. In addition, when the values
of KW and KG increase by the same amount, the increase in the lowest natu-
ral frequencies for the latter is larger than it is for the former, which indicates
that the impact of KG on the lowest natural frequencies is more significant than
that of KW .
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5. Concluding remarks

In this work, we developed a unified size-dependent theory based on the
CCST for analyzing the free vibration behavior of porous FG piezoelectric mi-
croplates which resting on an elastic medium were subjected to electric volt-
ages. Various CCST-based size-dependent SDPTs (i.e., the CCST-based CPT,
FSDPT, RSDPT, SSDPT, ESDPT, and HSDPT) were reproduced by incorpo-
rating their corresponding shape functions characterizing the through-thickness
distributions of shear deformations into our unified size-dependent theory. Euler–
Lagrange equations and the possible boundary conditions for our unified CCST-
based size-dependent theory were derived using Hamilton’s principle. The
Navier-type analytical solutions for the free vibration analysis of simply-sup-
ported, porous FG piezoelectric microplates were obtained and discussed in the
numerical examples presented above.

The following are some conclusions that can be drawn from this study:
1. The unified size-dependent theory for analyzing porous piezoelectric mi-

croplates presented herein can be reduced to one unified size-dependent theory
for analyzing porous piezoelectric macroplates and to another one for analyzing
porous elastic microplates by setting the material length scale parameter to zero
and by setting the piezoelectric and flexoelectric coefficients to zero, respectively.

2. Implementations of the unified size-dependent theory in the numerical ex-
amples, it was shown that the solutions obtained using the RSDPT, SSDPT,
ESDPT, and HSDPT were in excellent agreement with the approximate 3D so-
lutions obtained using the RFV-SDPT. For example, the relative error between
the solutions for the frequency parameters obtained using various SDPTs men-
tioned above and those obtained using the RFV-SDPT was less than 1.2% in
the cases of moderately thick plates (Lx/h = 10) and thin plates (Lx/h = 20),
as well as it was less than 3.7% in the cases of thick plates (Lx/h = 5).

3. When the porosity parameters of various porous microplates were the same,
the more the pores were concentrated in the mid-plane of each microplate, which
means that its mass was distributed farther away from its mid-planes, the higher
its overall stiffness was, which in turn increased its lowest natural frequencies.
Therefore, the lowest natural frequencies of the various porous microplates con-
sidered in the numerical examples can be arranged in the following descending
order from the highest to the lowest value: Type B-2 > Type B-1 > (Type B-3,
Type B-4).

4. The results showed that the lowest natural frequencies of a porous FG
piezoelectric microplate (ψ0 6= 0) were greater than those of a perfect FG piezo-
electric microplate (ψ0 = 0). On the one hand, this is because the increase in the
value of the porosity parameter resulted in a decrease in the overall stiffness of
the microplate, which in turn decreased the lowest natural frequencies. On the
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other hand, the higher the value of the porosity parameter was, the lower the
mass moments of inertia of the microplate were, which then led to an increase in
the lowest natural frequencies. In cases where the increase in these frequencies
resulting from a decrease in the mass moments of inertia was more significant
than their decrease caused by the decrease in the microplate’s overall stiffness,
the lowest natural frequencies of the porous FG piezoelectric plates were greater
than those of the perfect FG piezoelectric plates.

5. If a pair of voltages, |V0| and −|V0|, were applied to the top and bottom
surfaces of a microplate, respectively, an initial state of compressive in-plane
stress was induced resulting in a decrease occurred in the microplate’s overall
stiffness, which then decreased the lowest natural frequencies. On the other hand,
if a pair of voltages, −|V0| and |V0|, were applied on the top and bottom surfaces
of a microplate, respectively, an initial state of tensional in-plane stress was
induced resulting in an increase in the microplate’s overall stiffness, which then
increased the lowest natural frequencies.

6. The lowest natural frequencies of a porous piezoelectric microplate de-
creased with the increase in the value of κp. This was the result of two factors.
On the one hand, when an increase in the value of κp was associated with both an
increase in the volume fraction of the softer material, PZT-5H, and a decrease in
that of the stiffer material, PZT-4, the result was a lower overall stiffness of the
microplate. On the other hand, when an increase in the value of κp was linked
to both an increase in the volume fraction of the heavier material, PZT-5H, and
a decrease in that of the lighter material, PZT-4, the result is a higher overall
mass moment of inertia of the microplate. Both a decrease in the overall stiffness
of the microplate and an increase in the overall mass moments of inertia of the
microplate caused a decrease in the lowest natural frequencies.

7. The lowest natural frequencies of a simply-supported, porous FG piezoelec-
tric microplate increased as the values of KW and KG became greater. The im-
pact of the interactive effect between the microplate and its surrounding medium
in the case of thick plates was more significant than it was in the case of thin
plates, and the impact of KG on the lowest frequencies was more significant than
that of KW .

The benefits of our unified size-dependent plate theory induce the fact that
various size-dependent SDPTs based on the CCST were reproduced by incorpo-
rating their corresponding shape functions characterizing the through-thickness
distributions of transverse shear deformations into this unified theory, which al-
lows for comparisons of the results obtained using various size-dependent SDPTs
to be made, and subsequent discussions of these results can be readily carried
out. The implementation of the various CCST-based SDPTs examined in the
numerical examples presented above showed that the CCST-based RSDPT, SS-
DPT, ESDPT, and HSDPT exhibited an excellent performance in terms of their
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analyses of both moderately thick and thin porous piezoelectric microplates in
cases where the plane stress assumptions were met and the parameters of most
of the microplates used in MEMSs for practical applications fell within the scope
of our unified size-dependent plate theory.

Future research could extend the range of uses for this unified size-dependent
plate theory by applying it to the analysis of the mechanical behavior of various
microscale shells of revolution, including cylindrical shells, doubly-curved shells,
conical shells, spherical shells, toroidal shells. Follow-up research could replace
the Cartesian coordinate system with their corresponding orthogonal curvilin-
ear coordinate systems. In addition, the strong form-based analytical approach
presented in this article is suitable for the application to simply-supported cases
only. In order to extend the application of the unified size-dependent shear defor-
mation plate theory to various boundary conditions, it is required to develop rel-
evant weak form-based numerical methods, including the finite element method
and the meshless method, which has been ongoing.

Appendix A: The relationships between the generalized force
and moment resultants and the generalized displacement components

The relevant generalized force and moment resultants in Eqs. (2.49)–(2.54)
can be expressed in terms of the generalized displacement components as follows:

Nσ
(xx) =

h/2∫
−h/2

σ(xx) dz(A.1)

= A11u,x +A12v,y −B11w,xx−B12w,yy +A11fγx,x +A12fγy,y

− F̂ e31fφ+Ae31(2V0/h),

Nσ
(yy) =

h/2∫
−h/2

σ(yy) dz(A.2)

= A12u,x +A22v,y −B12w,xx−B22w,yy +A12fγx,x +A22fγy,y

− F̂ e32fφ+Ae32(2V 0/h),

Nσ
(xy) =

h/2∫
−h/2

τ(xy) dz(A.3)

= A66u,y +A66v,x−2B66w,xy +A66f (γx,y +γy,x),
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Mσ
(xx) =

h/2∫
−h/2

σ(xx)z dz(A.4)

= B11u,x +B12v,y −D11w,xx−D12w,yy +B11fγx,x +B12fγy,y

− P̂ e31fφ+Be
31(2V0/h),

Mσ
(yy) =

h/2∫
−h/2

σ(yy)z dz(A.5)

= B12u,x +B22v,y −D12w,xx−D22w,yy +B12fγx,x +B22fγy,y

− P̂ e32fφ+Be
32(2V0/h),

Mσ
(xy) =

h/2∫
−h/2

σ(xy)z dz(A.6)

= B66u,y +B66v,x−2D66w,xy +B66f (γx,y +γy,x),

Qσ(xz) =

h/2∫
−h/2

σ(xz) dz = E55fγx − Êe15fφ,x ,(A.7)

Qσ(yz) =

h/2∫
−h/2

σ(yz) dz = E44fγy − Êe24fφ,y ,(A.8)

P σ(xx) =

h/2∫
−h/2

σ(xx)f dz(A.9)

= A11fu,x +A12fv,y −B11fw,xx−B12fw,yy +H11fγx,x +H12fγy,y

− L̂e31fφ+Ae31f (2V0/h),

P σ(yy) =

h/2∫
−h/2

σ(yy)f dz(A.10)

= A12fu,x +A22fv,y −B12fw,xx−B22fw,yy +H12fγx,x +H22fγy,y

− L̂e32fφ+Ae32f (2V0/h),

P σ(xy) =

h/2∫
−h/2

σ(xy)f dz(A.11)

= A66fu,y +A66fv,x−2B66fw,xy +H66f (γx,y +γy,x),
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Rσ(xz) =

h/2∫
−h/2

σ(xz)(Df) dz = J55fγx − J̄e15fφ,x ,(A.12)

Rσ(yz) =

h/2∫
−h/2

σ(yz)(Df) dz = J44fγy − J̄e24fφ,y ,(A.13)

Mµ
[xy] =

h/2∫
−h/2

µxy dz(A.14)

= (−Ab33/4)(w,xx +w,yy) + (Eb33f/8)(γx,x +γy,y)

− (F̂ a33f/2)φ+Aa33(V 0/h),

Mµ
[xz] =

h/2∫
−h/2

µxz dz(A.15)

= −(Ab22/8)(u,xy −v,xx)− (Ab22f/8)(γx,xy −γy,xx)

+ (F b22f/8)γy + (Êa22f/2)φ,y ,

Mµ
[yz] =

h/2∫
−h/2

µyz dz(A.16)

= −(Ab11/8)(u,yy −v,xy)− (Ab11f/8)(γx,yy −γy,xy)

− (F b11f/8)γx − (Êa11f/2)φ,x ,

Rµ[xz] =

h/2∫
−h/2

µxzf dz(A.17)

= −(Ab22f/8)(u,xy −v,xx)− (Hb
22f/8)(γx,xy −γy,xx)

+ (Lb22f/8)γy + (K̂a
22f/2)φ,y ,

Rµ[yz] =

h/2∫
−h/2

µyzf dz(A.18)

= −(Ab11f/8)(u,yy −v,xy)− (Hb
11f/8)(γx,yy −γy,xy)

− (Lb11f/8)γx − (K̂a
11f/2)φ,x ,
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Sµ[xy] =

h/2∫
−h/2

µxy(Df) dz(A.19)

= −(Eb33f/4)(w,xx +w,yy) + (Jb33f/8)(γx,x +γy,y)

− (M̄a
33f/2)φ+ Ea33f (V0/h),

Tµ[xz] =

h/2∫
−h/2

µxz(D
2f) dz(A.20)

= −(F b22f/8)(u,xy −v,xx)− (Lb22f/8)(γx,xy −γy,xx)

+ (N b
22f/8)γy + (M̂a

22f/2)φ,y ,

Tµ[yz] =

h/2∫
−h/2

µyz(D
2f) dz(A.21)

= −(F b11f/8)(u,yy −v,xy)− (Lb11f/8)(γx,yy −γy,xy)

− (N b
11f/8)γx − (M̂a

11f/2)φ,x ,

RDx =

h/2∫
−h/2

(Dx)g dz(A.22)

= −(Êa11f/4)(u,yy −v,xy)− (K̂a
11f/4)(γx,yy −γy,xy)

− (M̂a
11f/4− J̄e15f )γx + Ĵη11fφ,x ,

RDy =

h/2∫
−h/2

(Dy)g dz(A.23)

= (Êa22f/4)(u,xy −v,xx) + (K̂a
22f/4)(γx,xy −γy,xx)

− (M̂a
22f/4− J̄e24f )γy + Ĵη22fφ,y ,

TDz =

h/2∫
−h/2

(Dz)(Dg) dz(A.24)

= F̂ e31fu,x +F̂ e32fv,y −(P̂ e31f + F̂ a33f/2)w,xx−(P̂ e32f + F̂ a33f/2)w,yy

+ (L̂e31f + M̄a
33f/4)γx,x +(L̂e32f + M̄a

33f/4)γy,y

+ N̂η
33fφ− F̂

η
33f (2V0/h),
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where

(A.25) (Aij Bij Dij Aijf Bijf Dijf Eijf Fijf Hijf Jijf )

=

hm/2∫
−hm/2

c̄ij [1 z z
2 f zf z2f Df (D2f) f2 (Df)2] dz,

in which the subscripts i and j are i = j = 1, . . . , 6 and j = 1, . . . , 6. c̄ij are
changed to cij when the pair of indices (i, j) 6= (1, 1), (1, 2), (2, 1) and (2, 2);

(A.26)
(
Alkj B

l
kj D

l
kj A

l
kjf B

l
kjf D

l
kjf E

l
kjf F

l
kjf H

l
kjf J

l
kjf K

l
kjf L

l
kjf M

l
kjf N

l
kjf

)
=

h/2∫
−h/2

lkj

[
1 z z2 f zf z2f Df (D2f) f2

(Df)2 f(Df) f(D2f) (Df)(D2f) (D2f)2
]
dz,

(A.27)
(
Êlkjf F̂

l
kjf Ĵ

l
kjf J̄

l
kjf K̂

l
kjf L̂

l
kjf M̂

l
kjf M̄

l
kjf N̂

l
kjf P̂

l
kjf

)
=

h/2∫
−h/2

lkj

[
g (Dg) g2 g(Df) gf (Dg)f g(D2f) (Dg)(Df) (Dg)(Dg) (Dg)z

]
dz,

in which the subscript k = 1, 2, 3. The variables lkj are changed to l̄kj when
j = 3. The variables lkj are changed to akk, bkk, and cαk when l = a, b, and c,
respectively. The variables lij are changed to ekj when l = e, where k = 1, 2, 3,
and l = 1, . . . , 6. Dg = dg(z)/dz = −(π/h) sin(πz/h).
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