PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-optional hybrid functions entropy doctrine advantages for a state maximal probability determination

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Multiopcjonalna hybrydowa funkcja entropii jako zasada dla określenia maksymalnego prawdopodobieństwa stanu systemu dynamicznego
Języki publikacji
EN
Abstrakty
EN
The presented paper considers a comparison of the traditional methods for the state maximal probability determination to the proposed hybrid probabilistic and variational concept. It is shown the advantages of the described multi-optional hybrid-effectiveness functions uncertainty measure conditional optimization doctrine in the sense of avoiding the traditional ways analytical complicatedness concerning the maximal probability of the possible state determination. The results of the numerical example are presented.
PL
W prezentowanym artykule rozważono porównanie tradycyjnych metod określania maksymalnego prawdopodobieństwa stanu systemu dynamicznego z zaproponowaną hybrydową koncepcją probabilistyczną i wariacyjną. pokazano zalety opisanej wielo opcjonalnej funkcji hybrydowo-efektywnościowej niepewności pomiaru i zasadę optymalizacji warunkowej w tym sensie, że prezentowana koncepcja unika tradycyjnych metod analitycznych dotyczących maksymalnego prawdopodobieństwa możliwego określenia stanu układu dynamicznego. Niezawodność urządzeń technicznych w dużym stopniu zależy od stanu systemu utrzymania ruchu i konserwacji. Entropia określenia stanu pozwala na uwzględnienie czynników niepewności działających podczas eksploatacji, obsługi technicznej i naprawy wszelkiego rodzaju obiektów inżynieryjnych, na przykład statków powietrznych. W końcowej części przedstawiono wyniki przykładu numerycznego.
Rocznik
Strony
53--65
Opis fizyczny
Bibliogr. 40 poz., wzory
Twórcy
  • National Aviation University, Aerospace Faculty, Kosmonavta Komarova Avenue, Kyiv, 03058, Ukraine
Bibliografia
  • [1] Dhillon, B. S., 2006, Maintainability, maintenance, and reliability for engineers. Taylor & Francis Group, New York, p. 214.
  • [2] Jaynes, E. T., 1957, ”Information theory and statistical mechanics”, Physical review, 106(4), pp. 620-630.
  • [3] Jaynes, E. T., 1957, ”Information theory and statistical mechanics. II”, Physical review, 108(2), pp. 171-190.
  • [4] Jaynes, E. T., 1982, ”On the rationale of maximum-entropy methods”, Proceedings of the IEEE, Vol. 70, pp. 939-952.
  • [5] Jing, Ch., 2003, ”An Entropy Theory of Psychology and its Implication to Behavioral Finance”, from: http://ssrn.com/abstract=465280. 10.2139/ssrn.465280.
  • [6] Kasianov, V., 2013, Subjective entropy of preferences. Subjective analysis, Institute of Aviation, Warsaw, Poland, p. 644 (ISbN 978-83-63539-08-5).
  • [7] Kroes, M. J., Watkins, W. A., Delp, F. and Sterkenburg, R., 2013, Aircraft maintenance and repair, 7th ed. McGraw-Hill, New York, USA, p. 736.
  • [8] Luce, R. D. and Krantz, D. H., 1971, ”Conditional Expected Utility”, Econometrica, 39, pp. 253-271.
  • [9] Luce, R. D., 2014, Individual Choice Behavior: A Theoretical Analysis. Dover Publications, New York, USA, p. 153. (ISBN 978-0486441368).
  • [10] Ma F. C., Lv, P. H. and Ye, M., 2012, Study on Global Science and Social Science Entropy Research Trend, 2012 IEEE fifth international conference on advanced computational intelligence (ICACI), October 18-20, Nanjing, Jiangsu, China, pp. 238-242.
  • [11] Silberberg, E. and Suen, W., 2001, The structure of economics. A mathematical analysis. McGraw-Hill, New York, p. 668.
  • [12] Smith D. J., 2005, Reliability, maintainability and risk. Practical methods for engineers, Elsevier, London, p. 365.
  • [13] Wild, T. W. and Kroes, M. J., 2014, Aircraft powerplants, 8th ed. McGraw-Hill, New York, p. 756.
  • [14] Zamfirescu, C. H., Duta, l. and Iantovics, B., 2010, ”On investigating the cognitive complexity of designing the group decision process”, Studies in Informatics and Control 19(3), pp. 263-270.
  • [15] Zamfirescu, C. B., Duta, l. and Iantovics, B., 2010, ”The cognitive complexity in modelling the group decision process”, Brain Broad Research in Artificial Intelligence and Neuroscience 2010(1), pp. 69-79.
  • [16] Goncharenko, A. V., 2018, ”Airworthiness support measures analogy to the prospective roundabouts alternatives: theoretical aspects,” Journal of Advanced Transportation, Article ID 9370597.10.1155/2018/9370597.
  • [17] Goncharenko, A. V., 2018, ”A multi-optional hybrid functions entropy as a tool for transportation means repair optimal periodicity determination,” Aviation, 22(2), pp. 60-66. 10.3846/aviation.2018.5930.
  • [18] Goncharenko, A. V., 2018, ”Development of a theoretical approach to the conditional optimization of aircraft maintenance preference uncertainty,” Aviation, 22(2), pp. 40-44. 10.3846/aviation.2018.5929
  • [19] Goncharenko, A. V., 2018, ”Optimal controlling path determination with the help of hybrid optional functions distributions,” Radio Electronics, Computer Science, Control, 1(44), pp. 149-158. 10.15588/1607-3274-2018-1-17.
  • [20] Goncharenko, A. V., 2018, ”Aeronautical and aerospace materials and structures damages to failures: theoretical concepts,” International Journal of Aerospace Engineering, Article ID 4126085. 10.1155/2018/4126085.
  • [21] Goncharenko, A. V., 2017, ”Aircraft operation depending upon the uncertainty of maintenance alternatives,” Aviation, (21)4, pp. 126-131. 10.3846/16487788.2017.1415227.
  • [22] Goncharenko, A. V., 2017, ”Optimal UAV maintenance periodicity obtained on the multi-optional basis,” Proceedings of the IEEE 4th International Conference on Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), pp. 65-68, IEEE, Kyiv, Ukraine, October 2017.
  • [23] Goncharenko, A. V., 2019, ”Relative pseudo-entropy functions and variation model theoretically adjusted to an activity splitting,” Proceedings of the 9th International Conference on Advanced Computer Information Technologies (ACIT’2019), pp. 52-55, Ceske budejovice, Czech Republic, June 2019.
  • [24] Goncharenko, A. V., 2018, ”Active systems communicational control assessment in multialternative navigational situations,” in Proceedings of the IEEE 5th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC), pp. 254-257, IEEE, Kyiv, Ukraine, October 2018.
  • [25] Goncharenko, A. V., 2018, ”Multi-optional hybrid effectiveness functions optimality doctrine for maintenance purposes,” Proceedings of the IEEE 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET-2018), S8: Quality, reliability and diagnostics of electronic and information systems and devices, pp. 771-775, IEEE, Lviv-Slavske, Ukraine, February 2018.
  • [26] Goncharenko, A. V., 2018, ”An entropy model of the aircraft gas turbine engine blades restoration method choice,” Proceedings of the International Conference on Advanced Computer Information Technologies (ACIT’2018), pp. 2-5, Ceske Budejovice, Czech Republic, June 2018.
  • [27] Goncharenko, A. V., 2016, ”Several models of artificial intelligence elements for aircraft control,” Proceedings of the IEEE 4th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC), pp. 224-227, IEEE, Kyiv, Ukraine, October 2016.
  • [28] Goncharenko, A. V., 2015, ”Applicable aspects of alternative UAV operation,” Proceedings of the IEEE 3rd International Conference on Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), pp. 316-319, IEEE, Kyiv, Ukraine, October 2015.
  • [29] Goncharenko, A. V., 2014, ”Navigational alternatives, their control and subjective entropy of individual preferences,” in Proceedings of the IEEE 3rd International Conference on Methods and Systems of Navigation and Motion Control (MSNMC), pp. 99-103, IEEE, Kyiv, Ukraine, October 2014.
  • [30] Goncharenko, A. V., 2013, ”Expediency of unmanned air vehicles application in the framework of subjective analysis,” Proceedings of the IEEE 2nd International Conference on Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), pp. 129-133, IEEE, Kyiv, Ukraine, October 2013.
  • [31] Kasjanov, V. and Szafran, K., 2015, ”Some hybrid models of subjective analysis in the theory of active systems”, Transactions of the Institute of Aviation, 3(240), pp. 27-31. 10.5604/05096669.1194963
  • [32] Pagowski Z. T., Szafran K., 2014, ”Ground effect inter-modal fast sea transport”, The International Journal on Marine Navigation and Safety of Sea Transportation, 8(2), pp. 317-320. 10.12716/1001.08.02.18
  • [33] Szafran K., 2014, ”Flight safety – the principle of maximum entropy, ”Safety on land, sea and air in the 21st century, 1, pp. 247-251, ISBN 978-83-61520-02-3, (in polish).
  • [34] Szafran, K. and Kramarski, I., 2015, ”Safety of navigation on the approaches to the ports of the republic of Poland on the basis of the radar system on the aerostat platform”, International Journal on Marine Navigation and Safety of Sea Transportation, 9(1), pp. 129-134. 10.12716/1001.09.01.16
  • [35] Szafran K., 2014, ”Traction vehicle operator safety – laboratory dynamic”, Logistyka, 6, pp. 192-197, (in Polish).
  • [36] Krzysztofik, I. and Koruba, Z., 2014, ”Mathematical model of movement of the observation and tracking head of an unmanned aerial vehicle performing ground target search and tracking”, Journal of Applied Mathematics, Special Issue (2014). 10.1155/2014/934250.
  • [37] Smirnov, N. N., 1990, Technical operation of aircraft: study-book for higher education institutions. Transport Moscow, USSR, p. 423, (in Russian).
  • [38] Gnedenko B. V. and Kovalenko, I. N., 2013, Introduction into the mass service theory. Moscow, Russia: URSS, p. 400, (in Russian).
  • [39] Ovcharov L. A., 1969, Applicable problems of the theory of mass service. Machinebuilding, Moscow, USSR, p. 324, (in Russian).
  • [40] Piskunov, N. S., 1985, Differential and Integral Calculus for Higher Engineering Educational Institutions, vol. 2: Study Book for Higher Engineering Educational Institutions. 13th edition. Nauka, Moscow, Russia, p. 560, (in Russian).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6bc34856-0c58-45a6-8d41-f97ebc15c8b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.