PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrated Assessment of Groundwater Pollution from the Landfill of Sewage Sludge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study was to assess the groundwater contamination from a sewage sludge landfill. The analysis was carried out in 2017 in accordance with the requirements of the national legislation for monitoring landfills and priority pollutants. The samples of groundwater from the landfill were taken from 25 observation wells, from depths of 45–60 m. The status and dynamics of changes in the landfill groundwater quality were estimated according to the data from the groundwater observation wells of the city observation network with regard to the chemical composition of groundwater and national standards of groundwater quality. The forecast estimates of a low level of pollutants entering groundwater through the soils characterized by low filtration properties were not justified. The concentration of heavy metals in groundwater was within the following range: Fe > Mn > Zn > Al > Cu > Ni > Pb > Cd > Hg. The excess concentration of the nitrogen-containing pollutants was observed within the range from 1.5 to 76 (on average 10 times) above the background value. The organic contamination of landfill groundwater (COD) is 2–9 times and BOD5 – 1.5–3 times higher than the average background value of groundwater observation wells in the city network. The probable cause for the pollutants entry into groundwater is associated with lithogenous and exogenous fracturing of the rocks and insufficient efficiency of the existing anti-filtration system of the landfill.
Rocznik
Strony
68--75
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Federal State Budgetary Educational Institution of Higher Education "Saint-Petersburg State University", 7-9 Universitetskaya emb., 199034, Saint-Petersburg, Russia
  • Scientific Research Center for Ecological Safety of the Russian Academy of Sciences, 18 Korpusnaya str.197110, Saint- Petersburg, Russia
  • Federal State Budgetary Educational Institution of Higher Education “Saint-Petersburg State University”, 7-9 Universitetskaya emb., 199034, Saint-Petersburg, Russia
Bibliografia
  • 1. Abd El-Salam M. M., & I Abu-Zuid G. (2015). Impact of landfill leachate on the groundwater quality: A case study in Egypt. Journal of advanced research, 6(4), 579–586.
  • 2. Bjerg P.L., Albrechtsen H.J Kjeldsen P., Christensen T.H., Cozzarelli I.M. 2003. The Groundwater Geochemistry of Waste Disposal Facilities Treatise on Geochemistry. Geochemistry. 9. 579–612.
  • 3. Brennan R.B., Clifford E. Devroedt C., Morrisonb L., Healy M.G. 2017. Treatment of landfill leachate in municipal wastewater treatment plants and impacts on effluent ammonium concentrations. Journal of Environmental Management. 188, 64–72
  • 4. Burkhard B, Maes J. (Eds) 2017. Mapping Ecosystem Services. Advanced Books. https://doi.org/10.3897/ab.e12837
  • 5. Casado-Vela J., Selles S., Diaz-Crespo C., NavarroPedreno J., Matiax-Beneyto J., Gomez I. 2007. Effect of composted sewage sludge application to soil on sweet pepper crop (Capsicum annuum var. annuum) grow under two explotitation regimes. Waste Management 27. 1509–1518.
  • 6. Chabuk A., Al-Ansari N., Ezz-Aldeen M., Laue J., Pusch R., Hussain H.M. Knutsson S. 2018. Two Scenarios for Landfills Design in Special Conditions Using the HELP Model: A Case Study in Babylon Governorate, Iraq. Sustainability 10, 125.
  • 7. Chiu K.K., Ye Z.N., Wong M.N. 2006. Growth of Vetiveria zizanionides and Phragmities austails on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: a greenhouse study. Bioresource Technology 97.157–170
  • 8. Conti, M.E. and Cecchetti, G. 2001. Biological monitoring: lichens as bioindicators of air pollution assessment – A review. Environmental pollution (Barking, Essex: 1987). 114. 471–92.
  • 9. Dashko R. E. and Volkova A.V. 2017. Geomechanical analysis of the root clays of St. Petersburg as a fractured block medium. Notes of the Mining Institute. 156, 118, (in Russian)
  • 10. Dregulo A. M., Pitulko V. M., Rodionov V. Z., Kulibaba, V.V., Petukhov V.V. 2019. Geoecological evaluation of environmental damage to the results of long-term dynamics of benzopyrene and petroleum within landfill sludge IOP Conference Series: Earth and Environmental Science. 321, 012037.
  • 11. Dregulo A.M. and Vitkovskaya R.F. 2018. Microbiological evaluation of soils of sites with accumulated ecological damage (Sewage Dumps). Fiber Chemistry. 50 (3), 243 – 247
  • 12. Dregulo A.M. 2019. Identification and prediction of climatic loads for design and operation of drying beds. Water and Ecology. 24 (1), 35–43
  • 13. Dregulo A.M. and Kudryavtsev A.V. 2018 Transformation of techno-natural systems of water treatment to objects of past environmental damage: peculiarities of the legal and regulatory framework. Water and Ecology. 3 (75), 54–62
  • 14. Dregulo, A. M. and Bobylev, N. G. 2021. Heavy Metals and Arsenic Soil Contamination Resulting from Wastewater Sludge Urban Landfill Disposal. Polish Journal of Environmental Studies, 30(1),81–89.
  • 15. Donatello S., Tyler M., Cheeseman C.R., 2010 EU landfill waste acceptance criteria and EU Hazardous Waste Derective compliance testing of incinerated sewage sludge ash. Waste Management. 30.,63–71
  • 16. Kapoor V., Li X., Elk M., Chandran K., Impellitteri C.A., Santo Doming J. 2015. Impact of Heavy Metals on Transcriptional and Physiological Activity of Nitrifying Bacteria / Environmental Science & Technology. 49 (22), 13454–13462
  • 17. Kuuppo P., Tamminen T., Voss M., Schulte U. 2006 Nitrogenous discharges to the eastern Gulf of Finland, the Baltic Sea: Elemental flows, stable isotope signatures, and their estuarine modification. Journal of Marine Systems. 63. (3–4), 191–208
  • 18. Luczkiewicz A. 2006. Soil and groundwater contamination as result of sewage sludge land application /Polish Journal of Environmental Studies. 15, 869–876.
  • 19. Lee Y.W., Ong S.K., Sato C. 1997. Effects of heavy metals on nitrifying bacteria. Water Science & Technology. 36(12), 69–74
  • 20. Methodological recommendations on carrying out inventory of objects accumulated environmental damage. 2013. Federal service for supervision in the sphere of environmental management of the Russian Federation. Available on: http://old.rpn.gov.ru/node/5209
  • 21. Naveen B.P., Sumalatha J., Malik, R.K. 2018. A study on contamination of ground and surface water bodies by leachate leakage from a landfill in Bangalore, India. Geo-Engineering 9, 27
  • 22. O’Geen, A.T. 2013 Soil Water Dynamics. Nature Education Knowledge 4(5):9 https://www.nature.com/scitable/knowledge/library/soil-water-dynamics-103089121/
  • 23. O’Kelly B.C. 2005. Sewage sludge to landfill: some pertinent engineering properties / Journal of the Air & Waste Management Association. 55(6), 765–771.
  • 24. Przydatek, G., Kanownik, W. 2019. Impact of small municipal solid waste landfill on groundwater quality. Environmental Monitoring and Assessment. 191, 169
  • 25. Report “Conducting state monitoring of the geological environment of St. Petersburg in 2017”. 2018. (Mineral, St. Petersburg). 1.40–68 (in Russian)
  • 26. Rodionov V.Z., Dregulo A.M., Kudryavtsev A.V. 2019. Anthropogenic impact on the ecological state of rivers in the Leningrad region. Water and Ecology. 24(4):96–108.
  • 27. Solovyova V.A. 1984. “Report on engineering-geological and hydrogeological mapping of the territory of Leningrad in m-Bah 1: 25000 and 1:50000 for justification of the General plan of development of the city taking into account the use of underground space, 1980–1984. Northern and North-Eastern parts of Leningrad”, 157 p. (in Russian)
  • 28. Song U., Lee E. J. 2010. Environmental and economical assessment of sewage sludge compost application on soil and plants in landfill // Resources, conservation and recycling. 54. 1109–1116
  • 29. Spinosa L. 2007. Wastewater Sludge: A Global Overview of the Current Status and Future Prospects. Water Intelligence Online. 6. https://doi.org/10.2166/9781780402154
  • 30. The Helsinki Convention. 1974. Available on: https://web.archive.org/web/20091111235043/ http://www.helcom.fi/Convention/en_GB/convention/
  • 31. Wang L.M., Zhang Y.M., Lian J.J., Chao J.Y., Gao Y.X., Yang F., Zhang L.Y. 2013. Impact of fly ash and phosphatic rock on metal stabilization and bioavailability during sewage sludge vermicomposting. Journal of Hazardous Materials, 136, 281–287.
  • 32. Wei Y., Liu Y. 2005. Effects sewage sludge compost application on crops and cropland in a 3-year study. Chemosphere. 59, 1257–1265.
  • 33. Zakhvataeva N.V. and Shelomkov A.S. 2013. Activated sludge as a managed ecological system/ Moscow. Expo Media-Press., 286 p. (in Russian)
  • 34. Zeng L.X., Wang T., Ruan T., Liu Q., Wang Y.W., Jiang G.B. 2012. Levels and distribution patterns of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China. Environmental Pollutions. 160, 88–94.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6bbf4966-262c-41c9-b294-5316f2b2eeff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.