Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article reports a proposed approach to a frictional resistance description in sheet metal forming processes that enables determination of the friction coefficient value under a wide range of friction conditions without performing time-consuming experiments. The motivation for this proposal is the fact that there exists a considerable amount of factors affect the friction coefficient value and as a result building analytical friction model for specified process conditions is practically impossible. In this proposed approach, a mathematical model of friction behaviour is created using multiple regression analysis and artificial neural networks. The regression analysis was performed using a subroutine in MATLAB programming code and STATISTICA Neural Networks was utilized to build an artificial neural networks model. The effect of different training strategies on the quality of neural networks was studied. As input variables for regression model and training of radial basis function networks, generalized regression neural networks and multilayer networks the results of strip drawing friction test were utilized. Four kinds of Al-Mg alloy sheets were used as a test material.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
48--57
Opis fizyczny
Bibliogr. 25 poz., fig., tab.
Twórcy
autor
- University of Stavanger, P.O. Box 8600 FORUS, N-4036 Stavanger, Norway
autor
- Department of Materials Forming and Processing, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
- Department of Manufacturing and Production Engineering, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
- Stanisław Pigon State School of Higher Vocational Education in Krosno, ul. Rynek 1, 38-400 Krosno, Poland
Bibliografia
- 1. Aleksendrić D., Barton D.C. and Vasić B. Prediction of brake friction materials recovery performance using artificial neural networks. Tribology International, 43(11), 2010, 2092–2099.
- 2. Allison P.D. Multiple regression: A primer pine forge press series in research methods and statistics. SAGE Publications Ltd., 1999.
- 3. Bariani P.B., Bruschi S. and Dal Negro T. Prediction of nickel-base superalloys’ rheological behaviour under hot forging conditions using artificial neural networks. Journal of Materials Processing Technology, 152(3), 2004, 395–400.
- 4. Cohen J., Cohen P., West S.G. and Aiken L.S. Applied multiple regression/correlation analysis for the behavioral sciences. Lawrence ERLBAUM Associates, 2003.
- 5. Dasgupta R., Thakur R. and Govindrajan B. Regression analysis of factors affecting high stress abrasive wear behaviour. Journal of Failure Analysis and Prevention, 2(2), 2002, 65–68.
- 6. de Souza T. and Rolfe B. Multivariate modelling of variability in sheet metal forming. Journal of Materials Processing Technology, 203(1-3), 2008, 1–12.
- 7. Dutta P. and Pratihar D.K. Modeling of TIG welding process using conventional regression analysis and neural network-based approaches. Journal of Materials Processing Technology, 184(1-3), 2007, 56–68.
- 8. Gyurova L.A. and Friedrich K. Artificial neural networks for predicting sliding friction and wear properties of polyphenylene sulfide composites. Tribology International, 44(5), 2011, 603–609.
- 9. Kasperkiewicz J. The application of ANNs in certain-analysis problems. Journal of Materials Processing Technology, 106(1-3), 2000, 74–79.
- 10. Kleinbaum D.G., Kupper L.L. and Muller K.E. Applied regression analysis and other multivariable methods. PWS Publishing Co., 1988.
- 11. Kumar P., Jain S.C. and Ray S. Study of surface roughness effects in elastohydrodynamic lubrication of rolling line contacts using a deterministic model. Tribology International, 34(10), 2001, 713–722.
- 12. Kurra S., Rahman N.H., Regalla S.P. and Gupta A.K. Modeling and optimization of surface roughness in single point incremental forming process. Journal of Materials Research and Technology, 4(3), 2015, 304-313.
- 13. Lemu H.G. and Trzepieciński T. Numerical and experimental study of frictional behaviour in bending under tension test. Strojniski Vestnik-Journal of Mechanical Engineering, 59(1), 2013, 41–49.
- 14. Li W. Manufacturing process diagnosis using functional regression. Journal of Materials Processing Technology, 186(1-3), 2007, 323–330.
- 15. Ma B., Tieu A.K., Lu C. and Jiang Z. A finite-element simulation of asperity flattening in metal forming. Journal of Materials Processing Technology,130–131, 2002, 450–455.
- 16. Myant C., Spikes H.A. and Stokes J.R. Influence of load and elastic properties on the rolling and sliding friction of lubricated compliant contacts. Tribology International, 43(1-2), 2010, 55–63.
- 17. Popko A., Jakubowski M. and Wawer R. Membrain neural network for visual pattern recognition. Advances Science and Technology Research Journal, 7(18), 2013, 54–59.
- 18. Powroźnik P. Polish emotional speech recognition using artificial neural network. Advances Science and Technology Research Journal, 8(24), 2014, 24–27.
- 19. Rapetto M.P., Almqvist A., Larsson R. and Lugt P.M. On the influence of surface roughness on real area of contact in normal, dry, friction free, rough contact by using a neural network. Wear, 266(5-6), 2009, 592–59.
- 20. Stachowicz F. and Trzepieciński T. Zastosowanie sieci neuronowych do wyznaczania współczynnika tarcia podczas kształtowania blach. Informatyka w Technologii Materiałów, 4, 2004, 87–97.
- 21. Trzepieciński T. Zastosowanie regresji wielokrotnej i sieci neuronowej do modelowania zjawiska tarcia. Zeszyty Naukowe Wyższej Szkoły Informatyki, 9(3), 2010, 31–43.
- 22. Statistica Neural Networks, Addendum for version 4. StatSoft, 1999.
- 23. Trzepieciński T. and Lemu H.G. Application of genetic algorithms to optimize neural networks for selected tribological tests. Journal of Mechanics Engineering and Automation, 2, 2012, 69–76.
- 24. Trzepieciński T. and Lemu H.G. Investigation of anisotropy problems in sheet metal forming using finite element method. International Journal of Material Forming, 4(4), 2011, 357–369.
- 25. Yetim A.F., Codur M.Y. and Yazici M. Using of artificial neural network for the prediction of tribological properties of plasma nitrided 316L stainless steel. Materials Letters, 158, 2015, 170–173.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6bbd5751-4dee-4d93-a1f6-e027a5a750da