PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review on research and application of multi-energy complementary system containing high proportion of renewable energy based on different attributes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To better understand the latest development of renewable energy systems, recent studies on multi-energy complementary power systems with a high proportion of renewable energy are reviewed in this paper. The connection modes of power grids and economic system analysis are summarized and discussed respectively, putting forward some suggestions on the system design and operation optimization. Firstly, the characteristics and differences between an integrated system and an off-grid system are reviewed, concluding that an integrated system is more reliable and costeffective based on a few case studies. Secondly, the commonly used economic parameters and cost evaluation methods of the hybrid power system are reviewed. Those methods offer crucial tools to optimize the system, and they are able to analyze the system feasibility, enabling the most economical configuration. The results of several cases prove that the hybrid multi-energy system is more economical than the single-energy system. Finally, there are few articles focusing on technical details assessments and environmental impacts, which leaves room for future study.
Rocznik
Strony
3--41
Opis fizyczny
Bibliogr. 106 poz., tab., wykr.
Twórcy
autor
  • School of Physical Science and Technology, University of Jinan, West Nanxin Zhuang Road 336, 250000 Shizhong District, Jinan City, Shandong Province, China; School of Engineering, Cardiff University, UK
autor
  • School of Physical Science and Technology, University of Jinan, West Nanxin Zhuang Road 336, 250000 Shizhong District, Jinan City, Shandong Province, China
autor
  • School of Physical Science and Technology, University of Jinan, West Nanxin Zhuang Road 336, 250000 Shizhong District, Jinan City, Shandong Province, China
autor
  • School of Physical Science and Technology, University of Jinan, West Nanxin Zhuang Road 336, 250000 Shizhong District, Jinan City, Shandong Province, China
autor
  • School of Mechanical and Mining Engineering, The University of Queensland, Australia
autor
  • Delft University of Technology, Delft, Netherlands
Bibliografia
  • [1] Mohaghegh M.R., Heidari M., Tasnim S., Dutta A., Mahmud S.: Latest advances on hybrid solar–biomass power plants. Energ. Source. Part A 135(2021), 1–24.
  • [2] Shezan S.K.A., Ping H.W.: Techno-economic and feasibility analysis of a hybrid PV-wind-biomass-diesel energy system for sustainable development at offshore areas in Bangladesh. Curr. Alternative Energ. 1(2017), 1, 20–32.
  • [3] Balali M.H., Nouri N., Omrani E., Nasiri A., Otieno W.: An overview of the environmental, economic, and material developments of the solar and wind sources coupled with the energy storage systems. Int. J. Energ. Res. 41(2017), 14, 1948–1962.
  • [4] Lakshmi G.S., Harivardhagni S., Divya G., Lavanya V.: Solar and bio-mass based hybrid power system for rural areas. In: Proc. 2020 IEEE-HYDCON, Hyderabad, 11 Sept. 2020, 1–5.
  • [5] Balamurugan P., Ashok S., Jose T.L.: An optimal hybrid wind-biomass gasifier system for rural areas. Energ. Source. Part A 33(2011), 9, 823–832.
  • [6] Bet Sarkis R., Zare V.: Proposal and analysis of two novel integrated configurations for hybrid solar-biomass power generation systems: Thermodynamic and economic evaluation. Energ. Convers. Manage. 160(2018), 411–425.
  • [7] Sahoo U., Kumar R., Pant P.C., Chandhary R.: Resource assessment for hybrid solar-biomass power plant and its thermodynamic evaluation in India. Sol. Energy 139(2016), 47–57.
  • [8] Zhang D., Liu J., Jiao S., Tian H., Lou C., Zhou Z. Zhang J., Wang C., Zuo J.: Research on the configuration and operation effect of the hybrid solar-wind-battery power generation system based on NSGA-II. Energy 189(2019), 116–121.
  • [9] Suresh N.S., Thirumalai N. C., Dasappa S.: Modeling and analysis of solar thermal and biomass hybrid power plants. App. Therm. Eng. 160(2019), 114–121.
  • [10] Baredar P., Sethi V.K., Pandey M.: Correlation analysis of small wind–solar– biomass hybrid energy system installed at RGTU Bhopal, MP (India). Clean Technol. Envir. Policy 12(2009), 3, 265–271.
  • [11] Khalid F., Dincer I., Rosen M.A.: Thermoeconomic analysis of a solar-biomass integrated multigeneration system for a community. Appl. Therm. Eng. 120(2017),645–653.
  • [12] Elkazaz M., Sumner M., Thomas D.: Energy management system for hybrid PVwind-battery microgrid using convex programming, model predictive and rolling horizon predictive control with experimental validation. Int. J. Elec. Power 115 (2020), 105–483.
  • [13] Yang Z., Hu J., Ai X., Wu J., Yang G.: Transactive energy supported economic operation for multi-energy complementary microgrids. IEEE T. Smart Grid (2021),1, 4–17.
  • [14] Moosavi A., Ljung A.L., Lundström T.S.: Design considerations to prevent thermal hazards in cylindrical lithium-ion batteries: An analytical study. Huagong Xuebao/CIESC J. 68(2017), 8, 3232–3241.
  • [15] Kumar H.G., Kumar P.S.: A comprehensive review on energy and exergy analysis of solar air heaters. Arch. Thermodyn. 41(2020), 3, 183–222.
  • [16] Singh A., Baredar P.: Techno-economic assessment of a solar PV, fuel cell, and biomass gasifier hybrid energy system. Energy 2(2016), 254–260.
  • [17] Chennaif M., Zahboune H., Elhafyani M., Zouggar S.: Electric system cascade extended analysis for optimal sizing of an autonomous hybrid CSP/PV/wind system with battery energy storage system and thermal energy storage. Energy 227(2021),120444.
  • [18] Giallanza A., Porretto M., Puma G.L., Marannano G.A.: sizing approach for standalone hybrid photovoltaic-wind-battery systems: A Sicilian case study. J. Clean. Prod. 199(2018), 817–830.
  • [19] Belmili H., Haddadi M., Bacha S., Almi N.F., Bendib B.: Sizing stand-alone photovoltaic–wind hybrid system: Techno-economic analysis and optimization. Renew. Sust. Ener. Rev. 30(2014), 821–832.
  • [20] Kaur H., Gupta S., Dhingra A.: Analysis of hybrid solar biomass power plant for generation of electric power. Mater. Today-Proc. 48(2022), 1134–1140.
  • [21] Jagtap K.K.; Patil G.; Katti P.K.; Kulkarni S.B.: Techno-economic modeling of Wind-Solar PV and Wind-Solar PV-Biomass hybrid energy system. In: Proc. IEEE Int. Conf. on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, 14-17 Dec. 2016.
  • [22] Abo-Elyousr F.K., Elnozahy A.: Bi-objective economic feasibility of hybrid microgrid systems with multiple fuel options for islanded areas in Egypt. Renew. Energ.128(2018), 37–56.
  • [23] Sawle Y., Gupta S.C., Bohre A.K.: Optimal sizing of standalone PV/Wind/Biomass hybrid energy system using GA and PSO optimization technique. Energy Proced. 117(2017), 690–698.
  • [24] Ahmad J., Imran M., Khalid A., Iqbal W., Ashraf S.R., Adnan M., Farooq Ali S., Khokhar K.S.: Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar. Energy 148(2018), 208–234.
  • [25] Tajeddin A., Roohi E.: Designing a reliable wind farm through hybridization with biomass energy. Appl. Therm. Eng. 154(2019), 171–179.
  • [26] Singh S., Singh M., Kaushik S.C.: Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system. Energ. Convers. Manage. 128(2016) 178–190.
  • [27] Barakat S., Ibrahim H., Elbaset A.: Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects. Sustain. Cities Soc. 60(2020), 102–178.
  • [28] Jahangir M.H., Shahsavari A,.Rad M.A.V.: Feasibility study of a zero emission PV/Wind turbine/Wave energy converter hybrid system for stand-alone power supply: A case study. J. Clean. Prod. 262(2020), 121–250.
  • [29] Xingang Z., Jieyu W., Xiaomeng L., Pingkuo L.: China’s wind, biomass and solar power generation: What the situation tells us. Renew. Sust. Ener. Rev. 168(2012),8, 6173–6182.
  • [30] Gabra S., Miles J., Scott S. A.: Techno-economic analysis of stand-alone wind micro-grids, compared with PV and diesel in Africa. Renew. Energ. 143(2019),928–1938.
  • [31] Gebrehiwot K., Mondal M.A.H., Ringler C., Gebremeskel A.G.: Optimization and cost-benefit assessment of hybrid power systems for off-grid rural electrification in Ethiopia. Energy 177(2019), 234–246.
  • [32] Ma T., Yang H., Lu L., Peng J.: Optimal design of an autonomous solar-windpumped storage power supply system. Appl. Energ. 160(2015), 728–736.
  • [33] Malik P., Awasthi M., Sinha S.: Analysis of sensitive parameters influencing a SPV/WT/Biomass/Battery based hybrid system. In: Proc. 8th Int. Conf. on Power Systems (ICPS), Jaipur, 20-22 Dec. 2019.
  • [34] Li C., Yang H., Shahidehpour M., Xu Z., Zhou B., Cao Y.: Optimal planning of islanded integrated energy system with solar-biogas energy supply. IEEE T. Sustain. Energ. 11(2019), 4, 2437–2448.
  • [35] Morais P.H., Lodi A., Aoki A.C., Modesto M.: Energy, exergetic and economic analyses of a combined solar-biomass-ORC cooling cogeneration systems for a Brazilian small plant. Renew. Energ. 157(2020), 1131–1147.
  • [36] Barakat S., Samy M.M., Eteiba M.B., Wahba W.I.: Viability study of grid connected PV/Wind/Biomass hybrid energy system for a small village in Egypt. In: Proc. 18th Int. Middle East Power Systems Conf. (MEPCON), Cairo, 27-29 Dec. 2016.
  • [37] Liu G., Rasul M.G., Amanullah M.T.O., Khan M.M.K.: Feasibility study of standalone PV-wind-biomass hybrid energy system in Australia. In: Proc. Asia-Pacific Power and Energy Engineering Conf., Wuhan, 25-28 Mar. 2011.
  • [38] Hossain M.M, Barua S, Matin M.A.A.: Pre-feasibility study for electrification in Nijhum Dwip using hybrid renewable technology. In: Proc. ICEEE-2015, Rajshahi, 04-06 Nov. 2015.
  • [39] Bhattacharjee S., Dey A.: Techno-economic performance evaluation of grid integrated PV-biomass hybrid power generation for rice mill. Sustain. Energ. Technol. Assess. 7(2014), 6–16.
  • [40] Allouhi A., Rehman S., Krarti M.: Role of energy efficiency measures and hybrid PV/biomass power generation in designing 100% electric rural houses: A case study in Morocco. Energ. Buildings 136(2021), 110770.
  • [41] Vendoti S., Muralidhar M., Kiranmayi R.: Techno-economic analysis of off-grid solar/wind/biogas/biomass/fuel cell/battery system for electrification in a cluster of villages by HOMER software. Environ. Dev. Sustain. 23(2021), 351–372.
  • [42] Wesly J., Brasil Jr A.C.P., Frate C.A., Badibanga R.K.: Techno-economic analysis of a PV-wind-battery for a remote community in Haiti. Case Stud. Chem. Environ. Eng. 2(2020), 100044.
  • [43] Boussetta M., EI Bachtiri R., Khanfara M., EI Hammoumi K.: Assessing the potential of hybrid PV–Wind systems to cover public facilities loads under different Moroccan climate conditions. Sustain. Energ. Technol. Assess. 22(2017), 74–82.
  • [44] Shahzad M.K., Zahid A., Rashid T., Rehan M.A., Ali M., Ahmad M.: Technoeconomic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renew. Energ.106(2017), 264–273.
  • [45] Acevedo-Arenas C.Y., Correcher A., Sánchez-Díaz C., Ariza E., Alfonso-Solar D., Vargas-Salgado C.: MPC for optimal dispatch of an AC-linked hybrid PV/wind/biomass/H2 system incorporating demand response. Energ. Convers. Manage.186(2019), 241–257.
  • [46] Ma T., Javed M.S.: Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource. Energ. Convers. Manage. 182(2019), 178–190.
  • [47] Perkins G.: Techno-economic comparison of the levelised cost of electricity generation from solar PV and battery storage with solar PV and combustion of bio-crude using fast pyrolysis of biomass. Energ. Convers. Manage. 171(2018), 1573–1588.
  • [48] Jahangir M.H., Cheraghi R.: Economic and environmental assessment of solarwind-biomass hybrid renewable energy system supplying rural settlement load. Sustain. Energ. Technol. Assess. 42(2020), 100895.
  • [49] Li J., Liu P., Li Z.: Optimal design and techno-economic analysis of a solar-windbiomass off-grid hybrid power system for remote rural electrification: A case study of west China. Energy 208(2020), 118387.
  • [50] Pina E.A., Lozano M.A., Serra L.M., Hernández A., Lázaro A.: Design and thermoeconomic analysis of a solar parabolic trough-ORC-Biomass cooling plant for a commercial center. Sol. Energy 215(2021), 92–107.
  • [51] Erwin E., Soemardi T.P., Surjosatyo A., Nugroho J., Nugraha K., Wiyono S.: Design optimization of hybrid biomass and wind turbine for minapolitan cluster in Domas, Serang, Banten, Indonesia. IOP Conf. Ser. Earth Env. Sci. 105, Gothenburg, 8-12 Oct. 2018.
  • [52] Al-Ghussain L., Ahmad A.D., Abubaker A.M., Mohamed M.A.: An integrated photovoltaic/wind/biomass and hybrid energy storage systems towards 100% renewable energy microgrids in university campuses. Sustain. Energ. Technol. Assess. 46(2021), 101273.
  • [53] Pérez-Navarro A.: Hybrid biomass-wind power plant for reliable energy generation. Renew. Energ. 35(2010), 7, 1436–1443.
  • [54] Liu Q., Bai Z., Wang X., Lei J., Jin H.: Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems. Energ. Convers. Manage. 122(2016), 252–262.
  • [55] Blanchet C.A.C., Pantaleo A.M., van Dam K.H.: A process systems engineering approach to designing a solar/biomass hybrid energy system for dairy farms in Argentina. Comput. Aided Process Eng. 46(2019), 1609–1614.
  • [56] Li C., Zheng Y., Li Z., Zhang L., Zhang L., Shan Y.: Techno-economic and environmental evaluation of grid-connected and off-grid hybrid intermittent power generation systems: A case study of a mild humid subtropical climate zone in China. Energy 203(2021), 120728.
  • [57] Malik P., Awasthi M., Sinha S.: Techno-economic and environmental analysis of biomass-based hybrid energy systems: A case study of a Western Himalayan state in India. Sustain. Energ. Technol. Assess. 45(2021), 101189.
  • [58] Dhass A.D., Harikrishnan S.: Cost effective hybrid energy system employing solarwind-biomass resources for rural electrification. Int. J. Renew. Energ. Res. IJRER 3(2013), 1, 222-229.
  • [59] Suresh P.V., Sudhakar K.: Life cycle cost assessment of solar-wind-biomass hybrid energy system for energy centre, MANIT, Bhopal. In: Proc. Int. Conf. on Green Computing, Communication and Conservation of Energy ICGCE-2013, Chennai, 12-14 Dec. 2013.
  • [60] Chong W.T., Naghavi M.S., Poh S.C., Mahlia T.M.I., Pan K.C.: Techno-economic analysis of a wind–solar hybrid renewable energy system with rainwater collection feature for urban high-rise application. Appl. Energ. 88(2011), 11, 4067–4077.
  • [61] Ullah Z., Elkadeem M.R., Kotb K.M., Taha I.B., Wang S.: Multi-criteria decisionmaking model for optimal planning of on/off grid hybrid solar, wind, hydro, biomass clean electricity supply. Renew. Energ. 179(2021), 885–910.
  • [62] Gonzalez A., Riba J.R., Esteban B., Rius A.: Environmental and cost optimal design of a biomass–wind–PV electricity generation system. Renew. Energ.126(2018), 420–430.
  • [63] Bamisile O., Huang Q., Dagbasi M., Adebayo V., Adun H., Hu W.: Steady-state and process modeling of a novel wind-biomass comprehensive energy system: An energy conservation, exergy and performance analysis. Energ. Convers. Manage.220(2020), 113139.
  • [64] Zhang X., Yang J., Fan Y., Zhao X., Yan R., Zhao J.: Experimental and analytic study of a hybrid solar/biomass rural heating system. Energy 190(2020), 116392.
  • [65] Sahoo U., Kumar R., Singh S.K., Tripathi A.K.: Energy, exergy, economic analysis and optimization of polygeneration hybrid solar-biomass system. Appl. Therm. Eng.145(2018), 685–692.
  • [66] Calise F., Figaj R.D., Vanoli L.: A novel polygeneration system integrating photovoltaic/thermal collectors, solar assisted heat pump, adsorption chiller and electrical energy storage: Dynamic and energy-economic analysis. Energ. Convers. Manage. 149(2017), 798–814.
  • [67] Giglio A., Lanzini A., Leone P., Garcia M.M.R., Moya E.Z.: Direct steam generation in parabolic-trough collectors: A review about the technology and a thermo-economic analysis of a hybrid system. Renew. Sust. Ener. Rev. 74(2017), 453–473.
  • [68] Pantaleo A.M., Camporeale S.M., Miliozzi A., Russo V., Shah N., Markides C.N.: Novel hybrid CSP-biomass CHP for flexible generation: Thermo-economic analysis and profitability assessment. Appl. Energ. 204(2017), 994–1006.
  • [69] Biboum A.C., Yilanci A.: Advanced exergoeconomic analysis of solar-biomass hybrid systems for multi-energy generation. Int. J. Exergy 33(2020), 1, 1–27.
  • [70] Malik P., Awasthi M., Sinha S.: Study on an existing PV/wind hybrid system using biomass gasifier for energy generation. Pollution 6(2020), 2, 325–336.
  • [71] Hossain M.S., Rahman M.F.: Hybrid solar PV/Biomass powered energy efficient remote cellular base stations. Int. J. Renew. Energ. Res. IJRER 10(2020), 1, 329–342.
  • [72] Li M., Lenzen M., Yousefzadeh M., Ximenes F.A.: The roles of biomass and CSP in a 100 % renewable electricity supply in Australia. Biomass Bioenerg. 143(2020),105802.
  • [73] Sarkar T., Bhattacharjee A., Samanta H., Bhattacharya K., Saha H.: Optimal design and implementation of solar PV-wind-biogas-VRFB storage integrated smart hybrid microgrid for ensuring zero loss of power supply probability. Energ. Convers. Manage. 191(2019), 102–118.
  • [74] Ma T., Yang H., Lu L.: A feasibility study of a stand-alone hybrid solar–wind– battery system for a remote island. Appl. Energ. 121(2014), 149–158.
  • [75] Olatomiwa L., Mekhilef S., Huda A.S.N., Ohunakin O.S.: Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria. Renew. Energ. 83(2015), 435–446.
  • [76] Kalamaras E., Belekoukia M., Lin Z., Xu B., Wang H., Xuan J.: Techno-economic assessment of a hybrid off-grid DC system for combined heat and power generation in remote islands. Energy Proced. 158(2019), 6315–6320.
  • [77] Pavankumar Y., Kollu R., Debnath S.: Multi-objective optimization of photovoltaic/wind/biomass/battery-based grid-integrated hybrid renewable energy system. IET Rene. Power Gen. 15(2021), 7, 1528–1541.
  • [78] Eteiba M.B., Barakat S., Samy M.M., Wahba W.I.: Optimization of an off-grid PV/biomass hybrid system with different battery technologies. Sustain. Cities Soc.40(2018), 713–727.
  • [79] Singh S., Kaushik S.C.: Optimal sizing of grid integrated hybrid PV-biomass energy system using artificial bee colony algorithm. IET Renew. Power Gen. 10(2016), 5,642–650.
  • [80] Maleki A., Pourfayaz F.: Optimal sizing of autonomous hybrid photovoltaic/wind/battery power system with LPSP technology by using evolutionary algorithms.Sol. Energy 115(2015), 471–483.
  • [81] Singh A., Basak P.: Conceptualization and techno-economic evaluation of microgrid based on PV/Biomass in Indian scenario. J. Clean. Prod. 317(2021), 128378.
  • [82] Hatata A.Y., Osman G., Aladl M.M.: An optimization method for sizing a solar/wind/battery hybrid power system based on the artificial immune system. Sustain. Energ. Technol. Assess. 27(2018), 83–93.
  • [83] Javed M.S, Song A, Ma T.: Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm. Energy 176(2019), 704–717.
  • [84] Karsh R.K., Debnath R., Soren N., Roy A.K., Pandey A.D.: Optimal economical analysis and performance assessment of wind-biomass hybrid energy system. In: Proc. Int. Conf. on Automation, Computational and Technology Management (ICACTM), London, 24-26 Apr. 2019.
  • [85] Bukar A.L., Tan C.W., Lau K.Y.: Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. Sol. Energy 188(2019), 685–696.
  • [86] Yuan A., Zhao Z., Wang S., Huang Q., Xie X.: Optimized scheduling of multiple energy complementary power stations with hydro/wind/photovoltaic/battery storage based on cascade hydropower stations. CSEE J. Power Energ. Sys. JPES (2019).
  • [87] Xu X., Hu W., Cao D., Huang Q., Chen C., Chen Z.: Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system. Renew. Energ. 147(2020), 1418–1431.
  • [88] Aykut E., Terzi U.K.: Techno-economic and environmental analysis of grid connected hybrid wind/photovoltaic/biomass system for Marmara University Goztepe campus. Int. J. Green Energ. 17(2020), 15, 1036–1043.
  • [89] Bilal O., Sambou V., Ndiaye P.A., Kébé C.M..F., Ndongo M.: Optimal design of a hybrid solar–wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP). Renew. Energ. 35(2010), 10, 2388–2390.
  • [90] Pantaleo A.M., Camporeale S.M., Sorrentino A., Miliozzi A., Shah N., Markides C.N.: Concentrating solar/biomass hybrid plants with Brayton and organic Rankine cycles: Techno-economic feasibility in selected Mediterranean areas. Renew. Energ. 147(2018), 3, 2913–2931.
  • [91] Hussain C.M.I., Norton B., Duffy A.: Technological assessment of different solarbiomass systems for hybrid power generation in Europe. Renew. Sust. Ener. Rev. 68(2017), 1115–1129.
  • [92] Pantaleo A.M., Camporeale S.M., Sorrentino A., Miliozzi A., Shah N., Markides C.N.: Solar/biomass hybrid cycles with thermal storage and bottoming ORC: System integration and economic analysis. Energy Proced. 129(2017), 724–731.
  • [93] Oyekale J., Petrollese M., Cau G.: Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant. Appl. Energ. 268(2020), 114888.
  • [94] Shukla P., Dhar S., Fujino J.: Renewable energy and low carbon economy transition in India. J. Renew. Sustain. Ener. 2(2010), 3, 031005.
  • [95] Paul A.W., Philipp S., Tobias P.: Uncommon turbine architectures for distributed power generation – development of a small velocity compounded radial re-entry turbine. Arch. Thermodyn. 41(2020), 4, 235–253.
  • [96] Raheem A, Hassan M.Y, Shakoor R, Rasheed N.: Economic feasibility of standalone wind energy hybrid with bioenergy from anaerobic digestion for electrification of remote area of Pakistan. Int. J. Integr. Eng. 6(2014) 3, 1–7.
  • [97] Nagel J.: Determination of an economic energy supply structure based on biomass using a mixed-integer linear optimization model. Ecol. Eng. 16(2000), 91–102.
  • [98] Wang C., Liu Y., Li X.: Energy management system for stand-alone diesel-windbiomass microgrid with energy storage system. Energy 97(2016), 90–104.
  • [99] Zhou Z., Ge L.: Operation of stand-alone microgrids considering the load following of biomass power plants and the power curtailment control optimization of wind turbines. IEEE Access 7(2019), 186115–186125.
  • [100] Ghenai C., Janajreh I.: Design of solar-biomass hybrid microgrid system in Sharjah. Energy Proced. 103(2016), 357–362.
  • [101] Bai Z., Liu Q., Lei J.: Thermodynamic evaluation of a novel solar-biomass hybrid power generation system. Energ. Convers. Manage. 142(2017), 296–306.
  • [102] Baredar P., Sethi V.K., Pandey M.: Correlation analysis of small wind–solar– biomass hybrid energy system installed at RGTU Bhopal, MP (India). Clean Technol. Envir. Pol. 12(2010), 3, 265–271.
  • [103] Anoune K., Bouya M., Astito A., Abdellah A.B.: Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review. Renew. Sust. Ener. Rev. 93(2018), 652–673.
  • [104] Nykamp S., Molderink A., Hurink J.L., Smit G.J.: Statistics for PV, wind and biomass generators and their impact on distribution grid planning. Energy 45(2012), 1, 924–932.
  • [105] Wang Y., Li F., Yu H., Wang Y., Qi C., Yang J.: Optimal operation of microgrid with multi-energy complementary based on moth flame optimization algorithm. Energy Sources, Part A: Recovery. Util. Environ. Eff. 42(2020), 7, 785–806.
  • [106] Sanni S.O., Oricha J.Y., Oyewole T.O., Bawonda F.I.: Analysis of backup power supply for unreliable grid using hybrid solar PV/diesel/biogas system. Energy 227(2021), 120506.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6bbd4e3b-bb10-4766-84f4-b222453c91bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.