PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Design and technological capabilities of a CNC skew rolling mill

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of a study investigating a skew rolling process for elongated axisymmetric parts are presented. Despite the fact that the skew rolling technique for producing such parts was developed and implemented in the mid-twentieth century, there are no studies on this problem. The first part of this paper presents the results of FEM modelling of skew rolling stepped axles and shafts (solid and hollow). The FEM analysis was performed using the MSC Simufact Forming software. The numerical simulation involved the determination of metal flow patterns, the analysis of thermal parameters of the material during rolling, and the prediction of cracking by the Cockcroft-Latham ductile fracture criterion. Force parameters of rolling solid and hollow parts were also determined. The aim of the FEM analysis was to determine initial design assumptions and parameters for the development of the skew rolling mill. Later on in the paper, a design solution of a CNC skew rolling mill for rolling parts based on their envelope profile is proposed. FEM strength test results of a mill stand, obtained with MSC. NASTRAN, are presented. Finally, the performance test results of the constructed rolling mill are presented. The experiments involved rolling real stepped shafts that were modelled numerically. Obtained results show that the proposed skew rolling method has considerable potential. The designed and constructed rolling mill can be used to perform the rolling process according to the proposed method, with the tool and material kinematics being controlled based on the set parameters of a workpiece envelope.
Rocznik
Strony
524--540
Opis fizyczny
Bibliogr. 30 poz., fot., rys., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Polan
  • Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Polan
autor
  • Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Polan
  • Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Polan
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Lublin, Poland
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Lublin, Poland
Bibliografia
  • [1] Shu X, Wei X, Li C, Hu Z. The influence rules of stress about technical parameters on synchronous rolling railway axis with multi-wedge cross-wedge rolling. Appl Mech Mater. 2010;37–38:1482–8.
  • [2] Pater Z. Cross wedge rolling. In: Button ST, editor. Comprehensive materials processing. Berlin: Elsevier Ltd.; 2014. p. 211–79.
  • [3] Zhou J, Yu Y, Zeng Q. Analysis and experimental studies of internal voids in multi-wedge cross wedge rolling stepped shaft. Int J Adv Manuf Technol. 2014;72:1559–66.
  • [4] Tofil A, Pater Z. Overview of the research on roll forging processes. Adv Sci Technol Res J. 2017;11:72–86.
  • [5] Cai Z. Precision design of roll-forging die and its application in the forming of automobile front axles. J Mater Process Technol. 2005;168:95–101.
  • [6] Zhuang W, Hua L, Wang X, Liu Y, Han X, Dong L. Numerical and experimental investigation of roll-forging of automotive front axle beam. Int J Adv Manuf Technol. 2015;79:1761–77.
  • [7] Franzke M, Recker D, Hirt G. Development of a process model for online-optimization of open die forging of large workpieces. Steel Res Int. 2008;79:753–7.
  • [8] Groche P, Fritsche D, Tekkaya EA, Allwood JM, Hirt G, Neugebauer R. Incremental bulk metal forming. Ann CIRP. 2007;56:635–56.
  • [9] Şchiopu V, Luca D. A new net-shape plating technology for axisymmetric metallic parts using rotary swaging. Int J Adv Manuf Technol. 2016;85:2471–82.
  • [10] Gronostajski Z, Pater Z, Madej L, Gontarz A, Lisiecki L, Lukaszek-Solek A, Luksza J, Mróz S, Muskalski Z, Muzykiewicz W, Pietrzyk M, Sliwa RE, Tomczak J, Wiewiórowska S, Winiarski G, Zasadzinski J, Ziólkiewicz S. Recent development trends in metal forming. Arch Civ Mech Eng. 2019;19:898–941.
  • [11] Groche P, Krech M. Efficient production of sensory machine elements by a two-stage rotary swaging process-relevant phenomena and numerical modelling. J Mater Process Technol. 2017;242:205–17.
  • [12] Tomczak J, Pater Z, Bulzak T. A helical rolling process for producing ball studs. Arch Civ Mech Eng. 2019;19:1316–26.
  • [13] Hu Z, Wang B, Liu J, et al. Technology of skew rolling. Beijing: Chemical Industry Press; 2014. p. 4–5.
  • [14] Pater Z, Tomczak J, Bartnicki J, Lovell MR, Menezes PL. Experimental and numerical analysis of helical-wedge rolling process for producing steel balls. Int J Mach Tools Manuf. 2013;67:1–7.
  • [15] Tofil A. The rolling processes of semifinished in a universal forging mill. Lublin: Lublin University of Technology Press; 2016.
  • [16] Pater Z. Cross wedge rolling. Lublin: Lublin University of Technology Press; 2009.
  • [17] Li R, Jiao S, Wang J. Roll—forging technology of automotive front axle precision performing and die design. IERI Procedia Vol. 2012;1:166–71.
  • [18] Smirnov VZ, Anisiforov VP, Vasilchikov MV et al (1957) Poperechnaya prokatka v mashinostroyenii, GNTIML, Moskva.
  • [19] Gronovskij SP. Novye procesy i stany dla prokatki izdelij v vintovych kalibrach. Moscow: Mietalurgija; 1980. (in Russian).
  • [20] Pater Z, Tomczak J, Bulzak T. Numerical analysis of the skew rolling process for rail axles. Arch Metall Mater. 2015;60:415–8.
  • [21] Pater Z, Tomczak J, Bulzak T. Numerical analysis of the skew rolling process for main shafts. Metalurgija. 2015;54(4):627–30.
  • [22] Lis K, Wójcik Ł, Pater Z. Numerical analysis of a skew rolling process for producing a cranckshaft preform. Open Eng. 2016;6:581–4.
  • [23] Pater Z, Tomczak J, Bulzak T. FEM simulation of the crosswedge rolling process for a stepped shaft. Strength Mater. 2017;49(4):521–7.
  • [24] Xu C, Shu XD. Influence of process parameters on the forming mechanics parameters of the three-roll skew rolling forming of the railway shaft with 1:5. Metalurgija. 2018;57(3):153–6.
  • [25] Wang JT, Shu XD, Zhang S. Effect of process parameters on average grain size and microscopic uniformity of the three-roll skew rolling forming of the railway hollow shaft. Metalurgija. 2020;59(1):47–50.
  • [26] Pater Z, Tomczak J, Bulzak T. Numeral analysis of a skew rolling process for producing axle shafts. Comput Methods Mater Sci. 2016;16:63–9.
  • [27] Simufact Material (2018) (v2018.0.60847), Material database. Simufact engineering gmbh, Hamburg.
  • [28] Pater Z, Tomczak J, Bulzak T. Rotary compression as a new calibration test for prediction of a critical damage value. J Mater Res Technol. 2020;9:5487–98.
  • [29] Pater Z, Tomczak J, Bulzak T, Wójcik Ł, Walczuk P. Assessment of ductile fracture criteria with respect to their application in the modeling of cross wedge rolling. J Mater Process Technol. 2020;278:1–11.
  • [30] Tomczak J, Pater Z, Bulzak T (2018) Skew rolling mill. Patent application: no P.427770.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6bb03585-49bf-4e0a-8505-b5078dfcd054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.