PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation Studies on the Application of Reverberation Time

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the research studies carried out on the reverberation time of rooms, in terms of theoretical aspects and applicability potentials. Over the last century a very large number of scientists have been attempting to work out models describing the reverberation time in enclosed rooms. They have also been trying to apply these models for the description of various acoustic parameters of the interior, i.e. the intelligibility of speech, clarity, articulation, etc. In fact, all these models are based on the Sabine’s statistical method. The paper presents the work of the scientists working on this problem, together with prospective applicability potentials. Such a review may be helpful for researchers, designers or architects involved in the discussed subject.
Słowa kluczowe
Rocznik
Strony
15--26
Opis fizyczny
Bibliogr. 55 poz., rys., wykr.
Twórcy
  • Faculty of Civil Engineering, Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland
  • Faculty of Civil Engineering, Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland
Bibliografia
  • 1. Arau-Puchades H. (1988), An Improved Reverberation Formula, Acustica, 65, 163–180.
  • 2. Arau-Puchades H. (2005), Are the scattering and the absorption coefficients two faces of a same coin? Reverberation time in two cases analyzed, International Congress on Noise Control Engineering (Internoise 2005), Rio de Janeiro, Brazil 7 – 10 August 2005, Vol. 1–5, ISBN 978-1-62276-339-9, 3203–3211.
  • 3. Arau-Puchades H., Berardi U. (2013), The reverberation radius in an enclosure with asymmetrical absorption distribution, Procedings of Meetings on Acoustics, 19, 015141.
  • 4. Aretz M., Orlowski R. (2009), Sound strength and reverberation time in small concert halls, Applied Acoustics, 70, 1099–1110.
  • 5. Astolfi A., Corrado V., Griginis A. (2008), Comparison between measured and calculated parameters for the acoustical characterization of small classrooms, Applied Acoustics, 69, 966–976.
  • 6. Beranek L.L. (2006), Analysis of Sabine and Eyring equations and their application to concert hall audience and chair absorption, J. Acoust. Soc. Am., 120, 3, 1399 – 1410.
  • 7. Berardi U. (2012), A Double Syntethic Index to Evaluate the Acoustics of Churches, Archives of Acoustics, 37, 4, 521–528.
  • 8. Berardi U. (2014), Simulation of acoustical parameters in rectangular churches, J. of Building Performance Simulation, 7, 1, 1–16.
  • 9. Bistafa S.R., Bradley J.S. (2000), Reverberation time and maximum background noise level for classrooms from a comparative study of speech intelligibility metrics, J. Acoust. Soc. Am., 107, 2, 861–875.
  • 10. Bistafa S.R., Bradley J.S. (2000), Predicting reverberation times in a simulated classroom, J. Acoust. Soc. Am., 108, 1721–1731.
  • 11. Bustamante P., Giron S., Zamarreño T. (2014), Simulated Sound-Fields in a Multi-Configurable Auditorium, Archives of Acoustics, 39, 3, 365–383.
  • 12. Dance S.M., Shield B.M. (1999), Modeling of sound fields in enclosed spaces with absorbent room surfaces. Part I: performance spaces, Applied Acoustics, 58, 1–18.
  • 13. Dance S.M., Shield B.M. (2000), Modeling of sound fields in enclosed spaces with absorbent room surfaces. Part II. Absorptive panels, Applied Acoustics, 61, 373–384.
  • 14. Engel Z., Kosała K. (2007), Index method of the acoustic quality assessment of sacral buildings, Archives of Acoustics, 32, 3, 3–22.
  • 15. En 12354-6: 2003 Estimation of acoustic performance of buildings from the performance of elements – Part 6: Sound absorption in enclosed spaces.
  • 16. Eyring C.F. (1930), Reverberation time in “dead” rooms, J. Acoust. Soc. Am., 1, 217–241.
  • 17. Fitzroy D. (1959), Reverberation formula which seems to be more accurate with nonuniform distribution of absorption, J. Acoust. Soc. Am., 31, 893–897.
  • 18. Galbrun L., Kitapci K. (2014), Accuracy of speech transmission index predictions based on the reverberation time and signal-to-noise ratio, Appl. Acoust., 81, 1–14.
  • 19. Hirata Y. (1979), Geometrical acoustics for rectangular rooms, Acustica, 43, 4, 247–252.
  • 20. Hodgson M. (1993), Experimental evaluation of the accuracy of the Sabine and Eyring theories in the case of non-low surface-absorption, J. Acoust. Soc. Am., 94, 2, 835–840.
  • 21. Houtgast T., Steeneken H.J.M. (1985), A review of the MTF concept in room acoustics and its use for estimating speech intelligibility in auditoria, J. Acoust. Soc. Am., 77, 3, 1069–1077.
  • 22. Houtgast T., Steeneken H.J.M. (1984), A Multi-Language Evaluation of the RASTI – Method for Estimating Speech Intelligibility in Auditoria, Acustica, 54, 4, 185–199.
  • 23. Iordache V., Catalina T., Cucu B-M. (2013), Experimental Investigation of the Reverberation Time Inside a Complex Geometry Indoor Space, Romanian Journal of Acoustics and Vibration, X, 2, 109–114.
  • 24. ISO 17497-1 (2004), Acoustics – Measurement of the sound scattering properties of surfaces, Part 1: Measurement of the random-incidence scattering coefficient in a reverberation room.
  • 25. Kang J., Neubauer R.O. (2001), Predicting reverberation time: Comparison between analytic formulae and computer simulation, Proceedings of the 17th International Conference on Acoustics (ICA).
  • 26. Kang J., Yap P.L., Meng Y., Chen B. (2007), Acoustics in large atrium spaces, 14th International Congress on Sound and Vibration.
  • 27. Knudsen V.O. (1929), The hearing of speech in auditoriums, J. Acoust. Soc. Am., 1, 56–82.
  • 28. Kraszewski J. (2012), Computing Reverberation Time in a 3D Room Model Using a Finite Difference Method Applied for the Diffusion Equation, Archives of Acoustics, 37, 2, 171–180.
  • 29. Kuttruff H. (2009), Room Acoustics, Fifth Edition, London: Spon Press, ISBN 10: 0-203-87637-7, pp. 374.
  • 30. Lam Y.W. (1996), The dependence of diffusion parameters in a room acoustics prediction model on auditorium sizes and ahapes, J. Acoust. Soc. Am., 100, 4, 2193–2203.
  • 31. Lam Y.W. (1999), Importance of early energy in Room Acoustics, AEOF3/AEOF4, Acoustics of Enclosed Spaces, University of Salford, 10–28.
  • 32. Lawrence T. (2006), The Effect of Partially Diffuse Sound Fields on the Prediction of Absorption Coefficients, MSc Audio Acoustics Dissertation, pp. 66.
  • 33. McMinn T. (1996), Development of an Evaluation Tool for Use at the Design Stage of Auditoria with Respect to Unassisted Speech Reinforcement, Msx Thesis of the Curtis University of Technology.
  • 34. Millington G. (1932), A modified formula for reverberation, J. Acoust. Soc. Am., 4, 69–82.
  • 35. Neubauer R.O., Kostek B. (2001), Prediction of the Reverberation Time in Rectangular Rooms with Non-Uniformly Distributed Sound Absorption, Archives of Acoustics, 26, 3, 183–201.
  • 36. Norris R.F., Andree C.A. (1930), An Instrumental Method of Reverberation Measurement, J. Acoust. Soc. Am., 1, 3, 366–372.
  • 37. Nowoświat A., Olechowska M. (2016), Fast estimation of speech transmission index using the reverberation time, Appl. Acoust., 102, 55–61.
  • 38. Nowoświat A., Olechowska M., Ślusarek J. (2016), Prediction of reverberation time using the residual minimization method, Appl. Acoust., 106, 42–50.
  • 39. Ozimek E., Rutkowski L. (1985), Deformation of amplitude modulated signals (AM) propagating in a room, Architectural Acustics, Strbske Pleso, 2, 174–177.
  • 40. Passero C.R.M., Zannin P.H.T. (2010), Statistical comparison of reverberation times measured by the integrated impulse response and interrupted noise methods, computationally simulated with ODEON software, and calculated by Sabine, Eyring and Arau-Puchades’ formulas, Applied Acoustics, 71, 1204–1210.
  • 41. Petelj A., Hadžistević M., Antić A., Hodolič J. (2012), Determination of absorption coefficient of sample under non-laboratory conditions, Journal of Production Engineering, 15, 2, 75–78.
  • 42. Plomb R., Steeneken H.J.M., Houtgast T. (1980), Predicting speech intelligibility in rooms from the Modulation Transfer Function II. Mirror image computer model applied rectangular rooms, Acustica, 46, 60–72.
  • 43. PN-EN 12354-6 (2005), Building Acoustic-Estimation of Acoustic Performance of Elements – Part 6: Sound Absorption In Enclosed Spaces.
  • 44. Pujolle J. (1975), New formula for the length of time of reverberation [in French: Nouvelle formule pour la durée de réverbération], Rev. d’Acoust, 19, 107–113.
  • 45. Rossell I., Arnet I. (2002), Theoretical and practical review of reverberation formulae for rooms with non homogenyc absorption distribution, Sevilla, Spain, Proc. Forum Acusticum.
  • 46. Sabine W.C. (1922), Collected papers on acoustics, Cambridge (MA), Harvard University Press, pp. 279.
  • 47. Sakuma T. (2012), Approximate theory of reverberation in rectangular rooms with specular and diffuse reflections, J. Acoust. Soc. Am., 132, 4, 2325–2336.
  • 48. Sette W.J. (1933), A new reverberation time formula, J. Acoust. Soc. Am., 4, 193–210.
  • 49. Skrzypczyk J. (2010), Perturbation methods. First new algebraic methodology. Use in the mechanics an acoustics, Gliwice: Silesian University of Technology, ISBN 978-83-7335-720-4, pp. 208.
  • 50. Skrzypczyk J. (2008), Perturbation methods for acoustic systems with interval parameters, Archives of Acoustics, 33, 4 (Suplement), 165–170.
  • 51. Tohyama M., Suzuki A. (1986), Reverberation Time in an Almost-Two-Dimensional Diffuse Field, J. Sound Vib., 111, 3, 391–398.
  • 52. Wang L.M., Rathsam J. (2008), The influence of absorption factors on the sensitivity of a virtual room’s sound field to scattering coefficients, Appl. Acoust., 69, 1249–1257.
  • 53. Wilmshurst L., Thompson D. (2012), A method for predicting the reverberation time and decay curves of rectangular rooms with non-uniform absorption distribution using Statistical Energy Analysis, Proceedings of the Acoustics Nantes Conference, 1435–1440.
  • 54. Winkler-Skalna A. (2008), Propagation of sound waves in uncertain environment – New interval perturbation methodology, Archives of Acoustucs, 33, 4 (Suplement), 171–176.
  • 55. Zhang Y.A. (2005), A Method to Predict Reverberation Time in Concert Hall Preliminary Design Stage, A Dissertation, Georgia Institute of Technology, December 2005, pp. 163.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6bae67da-97e7-4603-9c78-64bfa5d1014b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.