PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of observability and detectability for CSTR model of biochemical processes under uncertain system dynamics and various sets of measured outputs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An analysis of observability and detectability for continuous stirred tank reactor model of selected biochemical processes has been addressed in this paper. In particular, properties of observability or detectability of the considered system model have been proved under uncertain system dynamics in view of various sets of system measured outputs. It is related to considering system dynamics depending on initial conditions and the impact of inputs taking into account a given measured output. The method of indistinguishable state trajectories (indistinguishable dynamics) and tools based on the Lyapunov second method were used to investigate the observability and detectability properties. The analysis was performed for eight cases of different sets of measured outputs with association to the realistic features of measuring devices. The obtained research results are essential for system state estimation that involves the synthesis of state observers. The proposed approach may be successfully applied to the complex biochemical non-linear uncertain systems modelled as continuous stirred tank reactors.
Rocznik
Strony
667--696
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wzory
Twórcy
  • Department of Intelligent Control and Decision Support Systems and Digital Technologies Center, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Department of Intelligent Control and Decision Support Systems, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] G. Bastin and D. Dochain: On-line estimation and adaptive control of bioreactors. Elsevier Science Publishers, Amsterdam, Netherlands, 1990.
  • [2] G. Besancon: Nonlinear observers and applications. Springer-Verlag, Berlin, Germany, 2007.
  • [3] M. Czyżniewski and R. Łangowski: A robust sliding mode observer for non-linear uncertain biochemical systems. ISA Transactions, 123 (2022), 25-45. DOI: 10.1016/j.isatra.2021.05.040
  • [4] M. Czyżniewski and R. Łangowski: An observability and detectability analysis for non-linear uncertain CSTR model of biochemical processes. Scientific Reports, 12 (2022), 22327. DOI: 10.1038/s41598-022-26656-3
  • [5] M. Czyżniewski and R. Łangowski: An analysis of observability and detectability for different sets of measured outputs - CSTR case study. Intelligent and Safe Computer Systems in Control and Diagnostics, (2023), 352-363. DOI: 10.1007/978-3-031-16159-9_29
  • [6] M. Czyżniewski, R. Łangowski and R. Piotrowski: Respiration rate estimation using non-linear observers in application to wastewater treatment plant. Journal of Process Control, 123 (2023), 70-82. DOI: 10.1016/j.jprocont.2023.02.008
  • [7] D. Dochain and P.A. Vanrolleghem: Dynamical modelling and estimation in wastewater treatment processes. IWA Publishing, London, UK, 2001.
  • [8] J.P. Gauthier and I.A.K. Kupka: Observability and observers for nonlinear systems. SIAM Journal on Control and Optimization, 32(4) (1994), 975-994. DOI: 10.1137/S0363012991221791
  • [9] M.Z. Hadj-Sadok and J.L. Gouzé: Estimation of uncertain models of activated sludge processes with interval observers. Journal of Process Control, 11(3) (2005), 299-310. DOI: 10.1016/S0959-1524(99)00074-8
  • [10] H. Hammouri and Z. Tmar: Unknown input observer for state affine systems: A necessary and sufficient condition. Automatica, 46(2) (2010), 271-278. DOI: 10.1016/j.automatica.2009.11.004
  • [11] M.L.J. Hautus: Strong detectability and observers. Linear Algebra and its Applications, 50 (1983), 353-368. DOI: 10.1016/0024-3795(83)90061-7
  • [12] M. Henze, W. Gujer, T. Mino and M. Van Loosdrecht: Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Publishing, London, UK, 2000.
  • [13] R. Hermann and A.J. Krener: Nonlinear controllability and observability. IEEE Transactions on Automatic Control, 22(5) (1977), 728-740. DOI: 10.1109/TAC.1977.1101601
  • [14] S. Ibarra-Rojas, J.A. Moreno and G. Espinosa-Pérez: Global observability analysis of sensorless induction motors. Automatica, 40(6) (2004), 1079-1085. DOI: 10.1016/j.automatica.2004.01.020
  • [15] A. Isidori: Nonlinear control systems. Springer-Verlag, London, UK, 1995.
  • [16] R.E. Kalman: A new approach to linear filtering and prediction problems. Transactions of the ASME - Journal of Basic Engineering, 82(1) (1960), 35-45. DOI: 10.1115/1.3662552
  • [17] H.K. Khalil: Nonlinear systems, 3rd edition. Prentice-Hall, Inc., Upper Saddle River, US, 2002.
  • [18] A.J. Krener and A. Isidori: Linearization by output injection and nonlinear observers. Systems & Control Letters, 3(1) (1983), 47-52. DOI: 10.1016/0167-6911(83)90037-3
  • [19] R. Łangowski and M.A. Brdys: An optimised placement of the hard quality sensors for a robust monitoring of the chlorine concentration in drinking water distribution systems. Journal of Process Control, 68 (2018), 52-63. DOI: 10.1016/j.jprocont.2018.04.007
  • [20] M. Lhous, M. Rachik and E.M. Magri: Ideal observability for bilinear discrete-time systems with and without delays in observation. Archives of Control Sciences, 28(4) (2018), 601-616. DOI: 10.24425/acs.2018.125485
  • [21] D.G. Luenberger: An introduction to observers. IEEE Transactions on Automatic Control, 16(6) (1971), 596-602. DOI: 10.1109/TAC.1971.1099826
  • [22] J.A. Moreno and J. Alvarez: On the estimation problem of a class of continuous bioreactors with unknown input. Journal of Process Control, 30 (2015), 34-49. DOI: 10.1016/j.jprocont.2014.12.005
  • [23] J.A. Moreno and D. Dochain: Global observability and detectability analysis of uncertain reaction systems and observer design. International Journal of Control, 81(7) (2008), 1062-1070. DOI: 10.1080/00207170701636534
  • [24] J.A. Moreno and A. Vargas: Nonlinear observer design and observability of an aerobic bioreactor using respirometry. 1999 European Control Conference (ECC), (1999), 1493-1498. DOI: 10.23919/ECC.1999.7099523
  • [25] J.A. Moreno, E. Rocha-Cózatl and A. Vande Wouwer: A dynamical interpretation of strong observability and detectability concepts for nonlinear systems with unknown inputs: application to biochemical processes. Bioprocess and Biosystems Engineering, 37(1) (2012), 37-49. DOI: 10.1007/s00449-013-0915-5
  • [26] G. Olsson and B. Newell: Wastewater treatment systems. Modelling, diagnosis and control. IWA Publishing, London, UK, 1999.
  • [27] A. Rapaport and D. Dochain: Interval observers for biochemical processes with uncertain kinetics and inputs. Mathematical Biosciences, 193(2) (2005), 37-49. DOI: 10.1016/j.mbs.2004.07.004
  • [28] I. Saraiva, A. Vande Wouwer, A.L. Hantson and J.A. Moreno: Observability analysis and software sensor design for an animal cell culture in perfusion mode. IFAC Proceedings Volumes, 46(31) (2013), 255-260. DOI: 10.3182/20131216-3-IN-2044.00047
  • [29] A. Schaum and J.A. Moreno: Dynamical analysis of global observability properties for a class of biological reactors. IFAC Proceedings Volumes, 40(4) (2007), 213-218. DOI: 10.3182/20070604-3-MX-2914.00037
  • [30] A. Schaum, J.A. Moreno and A. Vargas: Global observability and detectability analysis for a class of nonlinear models of biological processes with bad inputs. 2nd International Conference on Electrical and Electronics Engineering, (2005), 343-346. DOI: 10.1109/ICEEE.2005.1529640
  • [31] G. Shilov and G. Chilov: Elementary functional analysis. Courier Corporation, Moscow, Russia, 1996.
  • [32] T. Ujazdowski, T. Zubowicz and R. Piotrowski: A comprehensive approach to SBR modelling for monitoring and control system design. Journal of Water Process Engineering, 53(4) (2023), 103774. DOI: 10.1016/j.jwpe.2023.103774
  • [33] J. Yu, V.M. Zavala and M. Anitescu: A scalable design of experiments framework for optimal sensor placement. Journal of Process Control, 67(4) (2018), 44-55. DOI: 10.1016/j.jprocont.2017.03.011
Uwagi
1. Financial support of these studies from Gdańsk University of Technology by the DEC-2/2020/IDUB/I.3.3 grant under the Argentum Triggering Research Grants - ‘Excellence Initiative - Research University’ program is gratefully acknowledged.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6bac5f49-03e5-4fca-a2ef-044666b179e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.