PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical and Experimental Evaluation of Thermal Resistance for Compression Bandages

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this paper is to report a study on the prediction of the steady-state thermal resistance of woven compression bandage (WCB) by using three different mathematical models. The experimental samples of WCB were 100% cotton, cotton–polyamide–polyurethane, and viscose–polyurethane. The bandage samples were evaluated at extensions ranging at 10–100%, with two- and three-layer bandaging techniques. Experimental thermal resistance was measured by thermal foot manikin (TFM) and ALAMBETA testing devices. The obtained results by TFM and ALAMBETA were validated and compared with the theoretical models (Maxwell–Eucken2, Schuhmeister, and Militky), and a reasonable correlation of approximately 78%, 92%, and 93% for ALAMBETA and 75%, 82%, and 83% for TFM, respectively, was observed.
Rocznik
Strony
18--25
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
  • Department of Technologies and Structures, Technical University of Liberec, Liberec 46117, Czechia
  • Department of Technologies and Structures, Technical University of Liberec, Liberec 46117, Czechia
autor
  • Department of Textile Evaluation, Technical University of Liberec, Liberec 46117, Czechia
autor
  • Faculty of Textile Technology, University of Zagreb, Zagreb 10000, Croatia
autor
  • Department of Textile Evaluation, Technical University of Liberec, Liberec 46117, Czechia
Bibliografia
  • [1] Utkun, E. (2015). A research on various comfort properties of interlock knitted fabrics. Industria Textila, 66(1).
  • [2] Aboalasaad, A. R., Sirková, B. K., Tešinová, P., Khalil, A. (2019). Guidelines for measuring thermal resistance on thermal foot manikin. Materials Today: Proceedings.
  • [3] Huang, J. (2016). Review of heat and water vapor transfer through multilayer fabrics. Textile Research Journal, 86(3), 325–336.
  • [4] Ghosh, A., Mal, P., Majumdar, A., Banerjee, D. (2017). An investigation on air and thermal transmission through knitted fabric structures using the Taguchi method. Autex Research Journal, 17(2), 152–163.
  • [5] Qian, X., Fan, J. (2009). A quasi-physical model for predicting the thermal insulation and moisture vapour resistance of clothing. Applied Ergonomics, 40(4), 577–590.
  • [6] Cubric, I. S., Skenderi, Z. (2010). Approach to the prediction of thermophysiological comfort. In: Katalinic, B. (Ed.). DAAAM International Scientific Book, pp. 81–88, doi: 10.2507/daaam.scibook.2010.09.
  • [7] Bizjak, M., Gorjanc, D. (2014). The influence of increased elasticity on resistance of cotton fabrics. XIIIth International Izmir Textile and Apparel, April, 2–5.
  • [8] Çolak, S. M., Özdil, N., Ekinci, M., Kaplan, Ö. (2016). Thermophysiological comfort properties of the leathers processed with different tanning agents. Tekstil ve Konfeksiyon, 26(4), 436–443.
  • [9] Nilsson, H., Holmér, I. (2000). Proceedings of the Third International Meeting on Thermal Manikin Testing, 3IMM, at the National Institute for Working Life, October 12–13, 1999. Web site: www.niwl.se/ah/nr2000:4.
  • [10] Aboalasaad, A. R., Skenderi, Z., Kolčavová, S. B., Khalil, A. A. (2020). Analysis of factors affecting thermal comfort properties of woven compression bandages. Autex Research Journal, 20(2), 178–185.
  • [11] Aboalasaad, A. R., Sirková, B. K., Ahmad, Z. (2019). Influence of tensile stress on woven compression bandage structure and porosity. Autex Research Journal, 1(ahead-of-print).
  • [12] Xiong, X., Venkataraman, M., Jašíková, D., Yang, T., Mishra, R., et al. (2019). An experimental evaluation of convective heat transfer in multi-layered fibrous materials composed by different middle layer structures. Journal of Industrial Textiles, doi: 10.1177/1528083719878845.
  • [13] Saville, B. P. (2000). Physical testing of textiles. Woodhead Publishing Ltd. and CRC Press LLC (North and South America), pp. 210–212.
  • [14] Dahoo, P. R., Khettab, M., Chong, C., Girard, A., Pougnet, P. (2015). Impact of voids in interconnection materials. In: Embedded mechatronic systems 2. Elsevier, pp. 79–106.
  • [15] Abdel-Rehim, Z. S., Saad, M. M., El-Shakankery, M., Hanafy, I. (2006). Textile fabrics as thermal insulators. AUTEX Research Journal, 6(3), 148–161.
  • [16] Khalil, A., Fouda, A., Těšinová, P., Eldeeb, A. S. (2020). Comprehensive assessment of the properties of cotton single Jersey knitted fabrics produced from different Lycra States. Autex Research Journal, 1(ahead-of-print).
  • [17] Bhattacharjee, D., Kothari, V. K. (2009). Heat transfer through woven textiles. International Journal of Heat and Mass Transfer, 52(7–8), 2155–2160.
  • [18] Jaeger, J. C., Carslaw, H. S. (1959). Conduction of heat in solids. Clarendon P.
  • [19] Cleland, A. C. (1990). Food refrigeration processes. Elsevier Applied Science.
  • [20] Cleland, A. C., Earle, R. L. (1977). A comparison of analytical and numerical methods of predicting the freezing times of foods. Journal of Food Science, 42(5), 1390–1395.
  • [21] Schuhmeister, J. (1877). Ber. K. Akad. Wien (Math-Naturw. Klasse), 76, 283.
  • [22] Baxter, S. T. (1946). The thermal conductivity of textiles. Proceedings of the Physical Society, 58(1), 105.
  • [23] Militky, J. (2011). Cut resistance of textile fabrics, selected topics of textile and material science. TUL FT Liberec.
  • [24] Bogaty, H., Hollies, N. R., Harris, M. (1957). Some thermal properties of fabrics: part I: The effect of fiber arrangement. Textile Research Journal, 27(6), 445–449.
  • [25] Mansoor, T., Hes, L., Bajzik, V., Noman, M. T. (2020). Novel method on thermal resistance prediction and thermophysiological comfort of socks in a wet state. Textile Research Journal, doi: 10.1177/0040517520902540.
  • [26] Mansoor, T., Hes, L., Bajzik, V. (2020). A new approach for thermal resistance prediction of different composition plain socks in wet state (part 2). Autex Research Journal, 1(ahead-of-print).
  • [27] Das, A., Alagirusamy, R., Kumar, P. (2011). Study of heat transfer through multilayer clothing assemblies: a theoretical prediction. AUTEX Research Journal, 11(2), 54–60.
  • [28] Wei, J., Xu, S., Liu, H., Zheng, L., Qian, Y. (2015). Simplified model for predicting fabric thermal resistance according to its microstructural parameters. Fibres & Textiles in Eastern Europe, 23, 4(112), 57–60.
  • [29] Srdjak, M., Skenderi, Z., Cubric, I. S. (2009). Water vapor resistance of knitted fabrics under different environmental conditions. Fibers & Textiles in Eastern Europe, 17(2), 72–75.
  • [30] Oğlakcioğlu, N., Marmarali, A. (2007). Thermal comfort properties of some knitted structures. Fibers & Textiles in Eastern Europe, 15(5–6), 64–65.
  • [31] Mangat, M. M., Hes, L., Bajzík, V. (2015). Thermal resistance models of selected fabrics in wet state and their experimental verification. Textile Research Journal, 85(2), 200–210.
  • [32] Mansoor, T., Hes, L., Skenderi, Z., Siddique, H. F., Hussain, S., et al. (2019). Effect of preheat setting process on heat, mass and air transfer in plain socks. The Journal of the Textile Institute, 110(2), 159–170.
  • [33] Hes, L., de Araujo, M. (2010). Simulation of the effect of air gaps between the skin and a wet fabric on resulting cooling flow. Textile Research Journal, 80(14), 1488–1497.
  • [34] Eucken, A. (1940). General laws for the thermal conductivity of various types of material and states of matter. Research in the Field of Engineering A, 11(1), 6–20.
  • [35] Kumar, P., Topin, F. (2014). Simultaneous determination of intrinsic solid phase conductivity and effective thermal conductivity of Kelvin like foams. Applied Thermal Engineering, 71(1), 536–547.
  • [36] Carson, J. K. (2017). Use of simple thermal conductivity models to assess the reliability of measured thermal conductivity data. International Journal of Refrigeration, 74, 458–464.
  • [37] Mao, N., Russell, S. J. (2007). The thermal insulation properties of spacer fabrics with a mechanically integrated wool fiber surface. Textile Research Journal, 77(12), 914–922.
  • [38] Militky J. (2006). Prediction of textile fabrics thermal conductivity. In: Fan J (Ed.). Thermal manikins and modelling, Hong Kong Polytechnic University, pp. 131–138.
  • [39] Ullmann, F. (2008). Ullmann’s fibers, Vol. 1. Wiley-VCH Verlag (Weinheim).
  • [40] Oliveira, A. V. M., Gaspar, A. R., Francisco, S. C., Quintela, D. A. (2014). Analysis of natural and forced convection heat losses from a thermal manikin: Comparative assessment of the static and dynamic postures. Journal of Wind Engineering and Industrial Aerodynamics, 132, 66–76.
  • [41] Hes, L. (2008). Non-destructive determination of comfort parameters during marketing of functional garments and clothing. Indian Journal of Fibre and Textile Research, 33, 239–245.
  • [42] Hes, L., Dolezal, I. (1989). New method and equipment for measuring thermal properties of textiles. Sen’i Kikai Gakkaishi (Journal of the Textile Machinery Society of Japan), 42(8), T124–T128.
  • [43] Neves, S. F., Campos, J. B. L. M., Mayor, T. S. (2015). On the determination of parameters required for numerical studies of heat and mass transfer through textiles–Methodologies and experimental procedures. International Journal of Heat and Mass Transfer, 81, 272–282.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6bac0642-50a7-480c-9343-257377c477d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.