PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical analysis of 3D printed cement mortar specimens using inkjet 3DP

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Investigations involving the experimental and numerical analysis of inkjet (powder-based) 3DP are relatively limited for cement mortar materials. This study, by using cement mortar specimens, aimed to determine the optimum strength of 3D printed structural members in all three planes by identifying the compressive strength of cubes, the modulus of elasticity and Poisson’s ratio. In addition, this study aimed to analyse and verify the numerical model for 3D printed cementitious mortar (CP) prisms and beams using an inkjet 3D printer by considering the mechanical behaviour of the printed prisms under compression. Robust and optimal mechanical properties of the 3D printed cementitious mortar obtained from laboratory testing were utilised in the simulation of structural components using ABAQUS software. As inputs for simulation, the strength properties of the printed objects in all three cartesian planes were obtained from test results. The obtained results showed that the printed cementitious materials have orthotropic properties and that the results of experiments were consistent with the analytical solutions and hypothesised model for the different geometric shapes. This finding is extremely valuable in determining the optimum features of 3D printed structures.
Rocznik
Strony
287--302
Opis fizyczny
Bibliogr. 33 poz., fot., rys., wykr.
Twórcy
  • School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
  • School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
  • School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
Bibliografia
  • [1] ISO/ASTM, Standard on Additive Manufacturing (AM) Technologies (2015) https:// doi. org/ 10. 1520/ ISOAS TM529 00-15.
  • [2] Lv X, et al. Binder jetting of ceramics: powders, binders, printing parameters, equipment, and post-treatment. Ceram Int. 2019. https:// doi. org/ 10. 1016/j. ceram int. 2019. 04. 012.
  • [3] Shakor P, et al. Dimensional accuracy, flowability, wettability, and porosity in inkjet 3DP for gypsum and cement mortar materials. Autom Constr. 2020;110:102964. https:// doi. org/ 10. 1016/j. autcon. 2019. 102964.
  • [4] Shakor P, et al. Effects of deposition velocity in the presence/absence of E6-glass fibre on extrusion-based 3D printed mortar. Addit Manuf. 2020;32:101069. https:// doi. org/ 10. 1016/j. addma. 2020. 101069.
  • [5] Upadhyay M, Sivarupan T, El Mansori M. 3D printing for rapid sand casting: a review. J Manuf Process. 2017;29:211–20. https:// doi. org/ 10. 1016/j. jmapro. 2017. 07. 017.
  • [6] Kazemian A, et al. Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture. Constr Build Mater. 2017;145:639–47. https:// doi. org/ 10. 1016/j. conbu ildmat. 2017. 04. 015.
  • [7] Panda B, et al. Current challenges and future perspectives of 3D concrete printing. Materialwissenschaft Werkstofftechnik. 2018. https:// doi. org/ 10. 1002/ mawe. 20170 0279.
  • [8] Jurrens Kevin K. Standards for the rapid prototyping industry. Rapid Prototyp J. 1999;5(4):169–78. https:// doi. org/ 10. 1108/ 13552 54991 02955 14.
  • [9] Colla V et al (2013) Large scale 3D printing: from deep sea to the moon. Low-cost 3D printing, for science, education and sustainable development. In: Canessa E, Fonda C, Zennaro M (eds) 2013: pp 127–132. http:// cites eerx. ist. psu. edu/ viewd oc/ downl oad? doi= 10.1. 1. 410. 790& rep= rep1& type= pdf# page= 129.
  • [10] Dini E (2009) D-shape. Monolite UK Ltd. https://d- shape. com.
  • [11] Feng P, Meng X, Zhang H. Mechanical behavior of FRP sheets reinforced 3D elements printed with cementitious materials. Compos Struct. 2015;134:331–42. https:// doi. org/ 10. 1016/j. comps truct. 2015. 08. 079.
  • [12] Lin X, et al. Preparation and application of 3D printing materials in Construction, in 27th Biennial Conference of the Concrete Institute of Australia. Australia: Melbourne; 2015.
  • [13] Lowke D, et al. Particle-bed 3D printing in concrete construction: possibilities and challenges. Cem Concr Res. 2018;112:50–65. https:// doi. org/ 10. 1016/j. cemco nres. 2018. 05. 018.
  • [14] Lee CS, et al. Measurement of anisotropic compressive strength of rapid prototyping parts. J Mater Process Technol. 2007;187:627–30. https:// doi. org/ 10. 1016/j. jmatp rotec. 2006. 11. 095.
  • [15] Khoshnevis B, et al. Experimental investigation of contour crafting using ceramics materials. Rapid Prototyp J. 2001;7(1):32–42. https:// doi. org/ 10. 1108/ 13552 54011 03651 44.
  • [16] Lowke D, et al. Particle bed 3D printing by selective cement activation: applications, material and process technology. Cem Concr Res. 2020;134:106077. https:// doi. org/ 10. 1016/j. cemco nres. 2020. 106077.
  • [17] Mechtcherine V, Nerella VN. 3D printing with concrete: state-of-the art, trends, challenges. Bautechnik. 2018;95(4):275–87. https:// doi. org/ 10. 1016/j. conbu ildmat. 2018. 05. 202.
  • [18] Shakor P, et al. Mechanical properties of cement-based materials and effect of elevated temperature on three-dimensional (3-D) printed mortar specimens in inkjet 3-D printing. ACI Mater J. 2019;116(2):55–67. https:// doi. org/ 10. 14359/ 51714 452.
  • [19] Shakor P et al (2018) A novel methodology of powder-based cementitious materials in 3D inkjet printing for construction applications. In: Sixth international conference on the durability of concrete structures. 2018, Whittles Publishing: Leeds, UK. https:// docs. lib. purdue. edu/ icdcs/ 2018/ mid/7/.
  • [20] Mandal S, et al. 3D powder printed tetracalcium phosphate scaffold with phytic acid binder: fabrication, microstructure and in situ X-ray tomography analysis of compressive failure. J Mater Sci Mater Med. 2018;29(3):29. https:// doi. org/ 10. 1007/ s10856- 018- 6034-8.
  • [21] Nemati KM, Monteiro PJ, Cook NG. A new method for studying stress-induced microcracks in concrete. J Mater Civ Eng. 1998;10(3):128–34. https:// doi. org/ 10. 1061/ (ASCE) 0899-1561(1998) 10: 3(128).
  • [22] Shakor P, et al. Review of emerging additive manufacturing technologies in 3D printing of cementitious materials in the construction industry. Front Built Environ. 2019;4(85):89. https:// doi. org/ 10. 3389/ fbuil. 2018. 00085.
  • [23] Thomas RJ, Peethamparan S. Effect of specimen size and curing condition on the compressive strength of alkali-activated concrete. Transp Res Rec. 2017;2629(1):9–14. https:// doi. org/ 10. 3141/ 2629- 02.
  • [24] ACI318-14 (2014) Building code requirements for structural concrete 2014: USA. https:// www. concr ete. org/ store/ produ ctdet ail. aspx? ItemID= 318U1 4& Langu age= English.
  • [25] ASTM:C109/C109M (2016) Compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] Cube Specimens). 2016. https:// doi. org/ 10. 1520/ C0109_ C0109M- 20B.
  • [26] Systémes D (2013) Abaqus theory guide. Abaqus 6.13 Documentation, 2013. http:// 130. 149. 89. 49: 2080/ v6. 13/ pdf_ books/ CAE. PDF.
  • [27] AS3700-2001 (2001) Masonry structures. https:// infos tore. saigl obal. com/ en- us/ stand ards/ as- 3700- 2001- 99150_ saig_ as_ as_ 257754/.
  • [28] Shakor P, Nejadi S, Paul G. Investigation into the effect of delays between printed layers on the mechanical strength of inkjet 3DP mortar. Manuf Lett. 2020;23:19–22. https:// doi. org/ 10. 1016/j. mfglet. 2019. 11. 004.
  • [29] Barile C, Casavola C, Cazzato A. Acoustic emissions in 3D printed parts under mode I delamination test. Materials. 2018;11(9):1760. https:// doi. org/ 10. 3390/ ma110 91760.
  • [30] Farzadi A, et al. Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering. PLoS ONE. 2014;9(9):e108252. https:// doi. org/ 10. 1371/ journ al. pone. 01082 52.
  • [31] Vaezi M, Chua C. Effects of layer thickness and binder saturation level parameters on 3D printing process. Int J Adv Manuf Technol. 2011;53(1–4):275–84. https:// doi. org/ 10. 1007/ s00170- 010- 2821-1.
  • [32] Zhou Z, et al. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater Sci Eng C Mater Biol Appl. 2014;38:1–10. https:// doi. org/ 10. 1016/j. msec. 2014. 01. 027.
  • [33] Dini E. D-shape Report. 2016. https:// doi. org/ 10. 2112/ SI75- 171.1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ba89eaa-a5c9-4c91-a77b-dd5f7cca673e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.