Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The operating principles of RFID antennas should be considered differently than it is applied in the classical theory of radio communication systems. The procedure of measuring the radiation pattern of antennas that could be applied to RFID transponders operating in the UHF band is seldom discussed correctly in the scientific literature. The problem consists in the variability of the RFID chip impedance that strongly influences measurement results. The authors propose the proper methodology for determining the radiation pattern with respect to an individual transponder as well as an electronically tagged object. The advantage of the solution consists in the possibility of using components of different measuring systems that are available in typical antenna laboratories. The proposed procedure is particularly important in terms of parameter validation - the identification efficiency and costs of an RFID system implementation can be evaluated properly only on the basis of real values of considered parameters.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
163--172
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
- Rzeszów University of Technology, Faculty of Electrical and Computer Engineering, Pola 2, 35-959 Rzeszów, Poland
Bibliografia
- [1] Du, K., Swamy, M.N.S. (2010). Wireless Communication Systems: From RF Subsystems to 4G Enabling Technologies. 1st ed., Cambridge University Press.
- [2] Balanis, C.A. (2005). Antenna Theory. 3rd ed., Wiley-Interscience.
- [3] ANSI/IEEE (1979). IEEE Standard Test Procedures for Antennas, Std 149-1979 (R2008).
- [4] Gillespie, E.S. (1988). Measurement of Antenna Radiation Characteristics on Far-Field Ranges. Lo, Y.T., Lee, S.W. Antenna Handbook, ch. 32, New York: Springer.
- [5] Appel-Hansen, J. (1988). Near-Field Far-Field Antenna Measurements. Lo, Y.T., Lee, S.W. Antenna Handbook., ch. 33, New York: Springer.
- [6] Kobayashi, H., Singh, D., Yamaguchi, Y. (2011). Near-field to far-field transformation by using antenna array factor. Proc. of 3rd APSAR 2011., Seoul, Korea.
- [7] Munteanu, I., Kakerow, R. (2014). Simulation Methodology for the Assessment of Field Uniformity in a Large Anechoic Chamber. IEEE Trans. Magn., 50(2), 213-216.
- [8] Icheln, C. (2001). Methods for Measuring RF Radiation Properties of Small Antennas. PhD Dissertation. Helsinki University of Technology, Espoo, Finland.
- [9] Tian-Hong, L., Alexander, M.J. (2006). A Method to Minimize Emission Measurement Uncertainty of Electrically Large EUTs in GTEM Cells and FARs Above 1 GHz. IEEE Trans. Electromagn. Compat., 48(4), 634-640.
- [10] Garcia-Fernandez, M.A., Carsenat, D., Decroze, C. (2014). Antenna Gain and Radiation Pattern Measurements in Reverberation Chamber Using Doppler Effect. IEEE Trans. Antennas Propag., 62(10), 5389-5394.
- [11] Dau-Chyrh, C., Chao-Hsiang, L., Chih-Chun, W. (2004). Compact antenna test range without reflector edge treatment and RF anechoic chamber. IEEE Antennas Propag. Mag., 46(4), 27-37.
- [12] Martinod, E., Lalande, M., Feix, N., Bertrand, V., Rammal, R. (2014). Measurement of antenna radiation patterns out of anechoic chamber: UWB transient facility in frequency band [300 MHz-3 GHz]. Proc. of IEEE CAMA 2014, Juan-les-Pins, Antibes, France.
- [13] Cano-Facila, F.J., Burgos, S., Martı́n, F., Sierra-Castaner, M. (2011). New Reflection Suppression Method in Antenna Measurement Systems Based on Diagnostic Techniques. IEEE Trans. Antennas Propag., 59(3), 941-949.
- [14] Blech, M.D., Leibfritz, M.M., Hellinger, R., Geier, D., Maier, F.A., Pietsch, A.M., Eibert, T.F. (2010). Time- Domain Spherical Near-Field Antenna Measurement System Employing a Switched Continuous-Wave Hardware Gating Technique. IEEE Trans. Instrum. Meas., 59(2), 387-395.
- [15] Parini, C., Gregson, S., McCormick, J., van Rensburg, D. J. (2014). Theory and Practice of Modern Antenna Range Measurements. IET.
- [16] Ito, T., Tsutsumi, Y., Obayashi, S., Shoki, H., Morooka, T. (2009). Radiation pattern measurement system for millimeter-wave antenna fed by contact probe. Proc. of European Microwave Conference 2009, Rome, Italy, 1543-1546.
- [17] Farzaneh, S., Ozturk, A.K., Sebak, A. R., Paknys, R. (2009). Antenna-Pattern Measurement Using Spectrum Analyzer for Systems with Frequency Translation. IEEE Antennas Propag. Mag., 51(3), 126-131.
- [18] Jankowski-Mihułowicz, P., Pitera, G., Węglarski, M. (2014). The Impedance Measurement Problem in Antennas for RFID Technique. Metrol. Meas. Syst., 21(3), 509-520.
- [19] Ukkonen, L., Sydanhelmo, L. (2010). Threshold Power-based Radiation Pattern Measurement of Passive UHF RFID Tags. Proc. of Progress in Electromagnetic Research Symposium 2010, Cambridge, USA, 87-90.
- [20] Abdulhadi, A.E., Abhari, R. (2012). Design and Experimental Evaluation of Miniaturized Monopole UHF RFID Tag Antennas. IEEE Antennas Wireless Propag. Lett., 11, 248-251.
- [21] Ustundag, A. (2013). The Value of RFID. Benefits vs. Costs. London: Springer-Verlag.
- [22] Jankowski-Mihułowicz, P., Węglarski, M. (2014). Determination of Passive and Semi-Passive Chip Parameters Required for Synthesis of Interrogation Zone in UHF RFID Systems. Electronics and Electrical Engineering, 20(9), 65-73.
- [23] Finkenzeller, K. (2010). RFID Handbook. 3rd ed., Wiley.
- [24] GS1 EPCglobal. (2013). EPC Radio-Frequency Identity Protocols Generation-2 UHF RFID; Specification for RFID Air Interface Protocol for Communications at 860 MHz - 960 MHz, ver. 2.0.0.
- [25] AMS. (2014). SL900A EPC Class 3 Sensory Tag Chip ‒ For Automatic Data Logging. Datasheet, v1-01.
- [26] Jankowski-Mihułowicz, P., Kawalec, D., Węglarski, M. (2015). Antenna Design for Semi-Passive UHF RFID Transponder with Energy Harvester. Radioengineering, 24(3), 722-728.
- [27] Jankowski-Mihułowicz, P., Lichoń, W., Pitera, G., Węglarski, M. (2014). Impedance Matching Between Antenna and Chip in RFID Transponder of UHF Band. Elektronika, 1, 41-43.
Uwagi
EN
This work was supported in part by the Polish National Centre for Research and Development (NCBR) under Grant No. PBS1/A3/3/2012. The work was developed by means of the equipment purchased in the Operational Program Development of Eastern Poland 2007-2013 of the Priority Axis I Modern Economics of Activity I.3 Supporting Innovation under Grant No. POPW.01.03.00-18-012/09-00 and the Program of Development of Podkarpacie Province of The European Regional Development Fund under Grant No. UDA-RPPK.01.03.00-18-003/10-00.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b9d2074-8958-444d-841c-f93e49e25d3e