Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we consider the stochastic diffusion process with semi-Markov switchings in an averaging scheme. We present results and conditions on convergence to the classic diffusion process, in case with semi-Markov process perturbation is uniformly ergodic. We used small parameter scheme to get the main result.
Słowa kluczowe
Rocznik
Tom
Strony
5--14
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- Department of Applied Mathematics Lublin University of Technology Lublin, Poland
autor
- Department of Applied Mathematics Lublin University of Technology Lublin, Poland
Bibliografia
- [1] Blankenship, G.L., & Papanicolaou, G.C. (1978). Stability and control of stochastic systems with wide band noise disturbances. SIAM. Appl. Math, 34, 437-476.
- [2] Kushner, H.J. (1978). Optimality conditions for the average cost per unit time problem with a diffusion model. Siam J. Control and Optimization, 16, 2, 330-346.
- [3] Skorokhod, A.V. (1989). Asymptotic Methods in the Theory of Stochastic Differen- tial Equations. AMS, 78, Providence.
- [4] Stroock, D.W., & Varadhan, S.R.S. (1979). Multidimensional Diffusion Processes. Berlin: Springer-Verlag.
- [5] Korolyuk, V.S. (1998). Stability of stochastic systems in the diffusion approximation scheme. Ukrainian Mathematical Journal, 50, 40-54.
- [6] Korolyuk, V.S., & Limnios, N. (2005). Stochastic Systems in Merging Phase Space. Singapore: World Scientific.
- [7] Korolyuk, V.S. (2010). Problem of large deviations for Markov random evolutions with independent increments in the scheme of asymptotically small. Ukrainian Mathematical Journal, 62, 739-747.
- [8] Anisimov, V.V. (1978). Limit theorems for switching processes and their applications. Cybernetics, 14(6), 917-929.
- [9] Anisimov, V.V. (1988). Limit theorems for switching processes. Theory Probab. and Math. Statist., 37, 1-5.
- [10] Anisimov, V.V. (1995). Switching processes: Averaging principle, diffusion approximation and applications. Acta Applicandae Mathematicae, 40, 95-141.
- [11] Anisimov, V.V. (1999). Averaging methods for transient regimes in overloading retrial queuing systems. Mathematical and Computing Modelling, 30(3/4), 65-78.
- [12] Anisimov, V.V. (2008). Switching Processes in Queueing Models. London: Wiley, Sons, ISTE.
- [13] Korolyuk, V.S., & Swishchuk, A.V. (1994). Random Evolutions. Dordrecht: Kluwer Acad. Publ.
- [14] Korolyuk, V.S., & Korolyuk, V.V. (1999). Stochastic Models of Systems. Dordrecht: Kluwer.
- [15] Korolyuk, V.S., Korolyuk, V.V., & Limnios, N. (2009). Queueing systems with semi-Markov flow in average and diffusion approximation schemes. Methodol. Comput. Appl. Probab., 11, 201-209.
- [16] Sviridenko, M.N. (1986). Martingale approach to limit theorems for semi-Markov processes. Theor. Probab. Appl., 540-545.
- [17] Chabanyuk, Ya.M. (2007). Stability of a dynamical system with semi-Markov switchings under conditions of diffusion approximation. Ukrainian Mathematical Journal, 59, 1441-1452.
- [18] Korolyuk, V.S., & Chabanyuk, Ya.M. (2002). Stability of a dynamical system with semi-Markov switchings under conditions of stability of the averaged system. Ukrainian Mathematical Journal, 54, 239-252.
- [19] Chabanyuk, Ya.M. (2007). Continuous stochastic approximation with semi-Markov switchings in the diffusion approximation scheme. Cybernetics and Systems Analysis, 43, 605-612.
- [20] Chabanyuk, Ya.M. (2007). Convergence of a jump procedure in a semi-Markov environment in diffusion-approximation scheme. Cybernetics and Systems Analysis, 43, 866-875.
- [21] Korolyuk, V.S., Limnios, N., & Samoilenko, I.V. (2011). Poisson aproximation of recurrent process with semi-Markov switching. Stochastic Analisys and Applications, 29, 769-778.
- [22] Korolyuk, V.S., Limnios, N., & Samoilenko, I.V. (2010). Poisson aproximation of recurrent process with locally independent increments and semi-Markov switching - toward application in reliability. Advances in Degradation Modeling, January, 105-116.
- [23] Samoilenko, I.V., Chabanyuk, Y.M., Nikitin, A.V., & Khimka, U.T. (2017). Differential equations with small stochastic additions under poisson approximation conditions. Cybernetics and Systems Analysis, 53, 3, 410-416.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b9cdbbc-fb4b-4f95-ab95-ba1d40639e5b