PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parametric optimization scheme of energy dissipation and shock absorption for prefabricated concrete frame

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The prefabricated concrete frame structure system has advantages such as short construction period and good seismic performance, but its deformation and energy dissipation capacity are poor under earthquake action, making it prone to damage. By improving the analysis and simulation functions of existing finite element analysis for prefabricated structures, the engineering applicability of the analysis algorithm has been improved. Then, a finite element model has been established for collaborative optimization, and a parameterized optimization scheme that meets the seismic reduction requirements has been obtained. The results show that the optimization method proposed in the study has a better effect in seeking the minimum cost, and meets the design requirements of the specification. The optimization scheme of prefabricated concrete frames designed by the research institute based on finite element analysis can efficiently optimize various parameters, greatly improving the structure energy dissipation and seismic performance.
Słowa kluczowe
Rocznik
Strony
527--541
Opis fizyczny
Bibliogr. 18 poz., il., tab.
Twórcy
autor
  • Department of Civil and Architectural Engineering, Jiaozuo University, Jiaozuo, China
Bibliografia
  • [1] J. Dong, H. Liu, S. Xia, Y. Cheng, M. Lei, and Z. Chen, “Experimental research and finite element analysis on structural stability of disc-buckle type formwork Support”, International Journal of Steel Structures, vol. 22, no. 3, pp. 748-746, 2022, doi: 10.1007/s13296-022-00603-4.
  • [2] A.M. Usman, and M.K. Abdullah, “An assessment of building energy consumption characteristics using analytical energy and carbon footprint assessment model”, Green and Low-Carbon Economy, vol. 1, no. 1, pp. 28-40, 2023, doi: 10.47852/bonviewGLCE3202545.
  • [3] L. Li, Z. Wei, D. Zhang, J. Wang, and X. Shi, “Finite element analysis of the effects of load amplitude and phase on crack initiation location in fretting fatigue”, Proceedings of the Institution of Mechanical Engineers, Part C. Journal of Mechanical Engineering Science, vol. 235, no. 23, pp. 7091-7100, 2021.
  • [4] V.D. Gazman, “ A new criterion for the ESG model”, Green and Low-Carbon Economy, vol. 1, no. 1, pp. 22-27, 2023, doi: 10.47852/bonviewGLCE3202511.
  • [5] A. Islam, F. Othman, N. Sakib, and H. Babu, “Prevention of shoulder-surfing attack using shifting condition with the digraph substitution rules”, Artificial Intelligence and Applications, vol. 1, no. 1, pp. 58-68, 2023, doi: 10.47852/bonviewAIA2202289.
  • [6] W. Yu, L. Jin, X. Liu, and X.L. Du, “Mesoscopic finite element analysis on dynamic direct tensile failure of lightweight aggregate concrete and corresponding size effect”, International Journal of Damage Mechanics, vol. 31, no. 3, pp. 403-425, 2022, doi: 10.1177/10567895211044189.
  • [7] S. Niu, Y. Zhao, and H. Bao, “Shape sensing of plate structures through coupling inverse finite element method and scaled boundary element analysis”, Measurement, vol. 190, no. 28, 2022, doi: 10.1016/j.measurement.2021.110676.
  • [8] M. Saleh, M. Alhamaydeh, and M. Zakaria, “Finite element analysis of reinforced concrete deep beams with square web openings using damage plasticity model”, Engineering Structures, vol. 278, no. 15, pp. 221-257, 2023, doi: 10.1016/j.engstruct.2022.115496.
  • [9] F. Yin, W.L. Cao, R.W. Wang, H.F. Weng, and Y.B. Liu, “Seismic behavior of prefabricated concrete filled steel tube-bordered monolayer reinforced shear wall”, Journal of Constructional Steel Research, vol. 194, no. 6, pp. 67-83, 2022, doi: 10.1016/j.jcsr.2022.107328.
  • [10] S. Li, D. Zhao, and Y. Zhou, “Research on seismic performance of prefabricated concrete-filled steel tubular frame joints”, International Journal of Structural Integrity, vol. 13, no. 2, pp. 327-347, 2022, doi: 10.1108/IJSI-08-2021-0087.
  • [11] S. Chen and M. Poongodi, “An exhaustive research and analysis on seismic performance of prefabricated concrete shear wall structure”, Journal of Vibroengineering, vol. 22, no. 8, pp. 1871-1883, 2020, doi: 10.21595/jve.2020.21628.
  • [12] K. Jain and A. Saxena, “Simulation on supplier side bidding strategy at day-ahead electricity market using ant lion optimizer”, Journal of Computational and Cognitive Engineering, vol. 2, no. 1, pp. 17-27, 2023, doi: 10.47852/bonviewJCCE2202160.
  • [13] Y. Huang, “On the resistance of concrete hollow thin-walled high piers to rock collisions”, Archives of Civil Engineering, vol. 69, no. 3, pp. 187-197, 2023, doi: 10.24425/ace.2023.146075.
  • [14] G. Muhiuddin, A. Mahboob, and M.E.A. Elnair, “A new study based on fuzzy bi-Γ-ideals in ordered-Γ- semigroups”, Journal of Computational and Cognitive Engineering, vol. 1, no. 1, pp. 42-46, 2022, doi: 10.47852/bonviewJCCE19919205514.
  • [15] Y. Yang and X. Song, “Research on face intelligent perception technology integrating deep learning under different illumination intensities”, Journal of Computational and Cognitive Engineering, vol. 1, no. 1, pp. 32-36, 2022, doi: 10.47852/bonviewJCCE19919.
  • [16] S. Choudhuri, S. Adeniye, and A. Sen, “Distribution alignment using complement entropy objective and adaptive consensus-based label refinement for partial domain adaptation”, Artificial Intelligence and Applications, vol. 1, no. 1, pp. 43-51, 2023, doi: 10.47852/bonviewAIA2202524.
  • [17] X.M. Long, Y.J. Chen, and J. Zhou, “Development of ar experiment on electric-thermal effect by open framework with simulation-based asset and user-defined input”, Artificial Intelligence and Applications, vol. 1, no. 1, pp. 52-57, 2023, doi: 10.47852/bonviewAIA2202359.
  • [18] Y.X. Jin, M. Xu, and J. Jia, “Analysis of the seismic performances of structures reinforced by selfcentering buckling-restrained braces”, Archives of Civil Engineering, vol. 69, no. 3, pp. 645-663, 2023, doi: 10.24425/ace.2023.146103.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b988b7b-1503-4023-afb5-387a4ad71628
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.