PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of the magnetostrictive composite materials with the polyurethane matrix reinforced with Terfenol-D particles

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this work is to obtain functional composite materials and to observe changes of magnetic properties of samples with different particle size distributions of magnetostrictive Terfenol-D (Tb0.3Dy0.7Fe1.9) powder. The influence of the concentration and particles size of the Tb0.3Dy0.7Fe1.9 on magnetic properties were investigated as function of applied magnetic field intensity, temperature and frequency. Design/methodology/approach: The investigated samples were obtained by casting of the composite materials with the polyurethane matrix reinforced with Tb0.3Dy0.7Fe1.9 particles. Magnetizations versus applied field curves were registered using the Oxford Instruments Ltd. vibrating sample magnetometer (VSM). Volume magnetic susceptibility was determined as temperature function on the Cahn RG automatic electrobalance (Ventron Instrumens, USA). Testing of the magnetic permeability in function of frequency was made using the Maxwell-Wien bridge system and the electrical properties were made by the resistivity measurements. Findings: Analysis establishes a direct connection between physical properties and structural characteristics of the Tb0.3Dy0.7Fe1.9 powder size: the increases of particle size distribution of Tb0.3Dy0.7Fe1.9 powder in composite materials amplify the magnetic responses and - at the same time - causing growth of resistivity values also. Moreover, in the investigated frequency range, no effect was observed of frequency on the susceptibility value for the particular material, which suggests possibility of using these materials in the high-frequency magnetic fields. Practical implications: The polyurethane matrix in investigated composite materials causes growth of resistivity, limiting these way losses for eddy currents at the high operating frequency of the transducers. Originality/value: The obtained results show the possibility of manufacturing the magnetostrictive composite materials based on the Tb0.3Dy0.7Fe1.9 particles, with desired physical properties (including electrical one) in cost effective way in comparison to conventional giant magnetostrictive materials (GMM).
Rocznik
Strony
316--322
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland
Bibliografia
  • [1] A.E. Clark, H.S. Belson, N. Tamagawa, Magnetostriction anisotropy in cubic rare earth-Fe2 compounds, Proceeding of the American Institute of Physics Conference 10 (1973) 749-753.
  • [2] G. Engdahl, Handbook of giant magnetostrictive materials, Academic Press, San Diego, 2000.
  • [3] J.W. Xie, D. Fort, J.S. Abell, The preparation, microstructures and magnetostrictive properties of Samfenol-D, Journal of Alloys and Compounds 366 (2004) 241-247.
  • [4] J.R. Cullen, A.E. Clark, Magnetostriction and structural distortion in rare-earth intermetallics, Physical Review B 15 (1977) 4511-4515.
  • [5] M. Palit, J.A. Chelvane, S. Pandian, N. Das, V. Chandrasekaran, Effect of solidification rate on the microstructural features and magnetostriction of directionally solidified Tb03Dyo.7Fe195, Scripta Materialia 58 (2008) 819-821.
  • [6] B.W. Wang, L. Weng, S.Y Li, S.Z. Zhou, X.X. Gao, Dynamic characteristic of Tb-Dy-Fe polycrystals with <110> axial alignment, Materials Science Forum 475-479 (2005) 2251-2254.
  • [7] J.C. Yan, S.X. Lü, X.Q. Xie, Z.G. Zhou, S.Q. Yang, S.Y. He, An alignment evaluation method for polycrystalline Terfenol-D based on magnetostriction effect, Journal of Magnetism and Magnetic Materials 234 (2001) 431-436.
  • [8] L.A. Dobrzański, A. Tomiczek, A. Nabiałek, Z. Stokłosa, Magnetic properties of composite materials with giant magnetostriction, Archives of Materials Science and Engineering 51/2 (2011) 97-102.
  • [9] J.D. Snodgrass, O.D. McMasters, Optimized TERFENOL-D manufacturing processes, Journal of Alloys and Compounds 258 (1997) 24-29.
  • [10] A. Tomiczek, Magnetostrictive composite materials with the polymer matrix reinforced with Tb0.3Dy0.7Fe1.95 particles, Ph.D. Thesis - unpublished, Main Library of the Silesian University of Technology, Gliwice, 2012 (in Polish).
  • [11] T.A. Duenas, G.P. Carman, Particle distribution study for low-volume fraction magnetostrictive composites, Journal of Applied Physics 90/5 (2001) 2433-2439.
  • [12] C. Rodríguez, M. Rodriguez, I. Orue, J.L. Vilas, J.M. Barandiarán, M.L.F. Gubieda, L.M. León, New elastomer - Terfenol-D magnetostrictive composite, Sensors and Actuators A 149 (2009) 252-254.
  • [13] J. Tian, Z. Zuo, D. Pan, S. Zhang, Bonded Terfenol-D composites with low eddy current loss and high magnetostriction, Rare Metals 29/6 (2010) 579-582.
  • [14] W. Bodnar, P. Stoch, J. Chmist, J. Pszczoła, P. Zachariasz, J. Suwalski, Electrical resistivity and Mossbauer effect investigations on Tb0.27Dy0.73(Mn1-xFex)2 intermetallics, Journal of Alloys and Compounds 505 (2010) 393-399.
  • [15] J. Liu, W. Ren, D. Li, N. Sun, X. Zhao, J. Li, Z. Zhang, Magnetic transitions and magnetostrictive properties of TbxDy1-x(Fe0.8Co0.2)2 (0.20
  • [16] X. Zheng, P. Zhang, F. Li, Z. Cheng, B. Shen, A magnetic, magnetostrictive and Mossbauer study of Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95 alloys, Journal of Magnetism and Magnetic Materials 321/23 (2009) 3842-3846.
  • [17] A. Boczkowska, J. Kapuściński, Z. Lindemann, D. Witemberg-Perzyk, S. Wojciechowski, The composites, Publication of Warsaw University of Technology, Warsaw 2003 (in Polish).
  • [18] M. Bilewicz, J.C. Viana, L.A. Dobrzański, Development of microstructure affected by in-mould manipulation in polymer composites and nanocomposite, Journal of Achievements in Materials and Manufacturing Engineering 31 (2008) 71-76.
  • [19] K. Srinivasan, Composite materials, Production, properties, testing and application, Alpha Science International Ltd., Oxford, 2009.
  • [20] L. Sandlund, M. Fahlander, T. Cedell, A.E. Clark, J.B. Restrorff, M. Wun-Fogle, Magnetostriction, elastic moduli, and coupling factors of composite Terfenol-D, Journal of Applied Physics 75 (1994) 5656-5658.
  • [21] L. Ruiz de Angulo, J.S. Abell, I.R. Harris, Magnetostrictive properties of polymer-bonded Terfenol-D composites, Journal of Magnetism and Magnetic Materials 157/158 (1996) 508-509.
  • [22] J. Kaleta, D. Lewandowski, R. Mech, P. Gąsior, Magnetomechanical properties of Terfenol-D powder composites, Solid State Phenomena 154 (2009) 35-40.
  • [23] R. Dosoudil, M. Ušáková, J. Franek, A. Grusková, J. Sláma, Dispersion of complex permeability and EM-wave absorbing characteristics of polymer-based composites with dual ferrite filler, Journal of Magnetism and Magnetic Materials 320 (2008) 849-852.
  • [24] R. Dosoudil, M Ušáková., J. Franek, J. Sláma, A. Grusková, Particle size and concentration effect on permeability and EM-wave absorption properties of hybrid ferrite polymer composites, IEEE Transactions on Magnetics 46 (2010) 436-439.
  • [25] T. Tsutaoka, Frequency dispersion of complex permeability in Mn-Zn and Ni-Zn spinel ferrites and their composite materials, Journal of Applied Physics 93 (2003) 2789-2796.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b949b7f-60ca-4265-8556-b27cf76389c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.