Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, we study the center of a generalized effect algebra (GEA), relate it to the exocenter, and in case the GEA is centrally orthocomplete (a COGEA), relate it to the exocentral cover system. Our main results are that the center of a COGEA is a complete boolean algebra and that a COGEA decomposes uniquely as the direct sum of an effect algebra (EA) that contains the center of the COGEA and a complementary direct summand in which no nonzero direct summand is an EA.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--21
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, USA
autor
- Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia
Bibliografia
- [1] L. Beran, Orthomodular Lattices, An Algebraic Approach, Mathematics and its Applications, Vol. 18, D. Reidel Publishing Company, Dordrecht, 1985.
- [2] P. Busch, P. J. Lahti, P. Mittelstaedt, The Quantum Theory of Measurement, Lecture Notes in Physics, m2, Springer-Verlag, Berlin, Heidelberg, New York, 1991.
- [3] A. Dvurecenskij, S. Pulmannová, New Trends in Quantum Structures, Kluwer, Dordrecht, 2000.
- [4] D. J. Foulis, MV and Heyting effect algebras, Found. Phys. 30(10) (2000), 1687–1706.
- [5] D. J. Foulis, M. K. Bennett, Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331–1352.
- [6] D. J. Foulis, S. Pulmannová, Type-decomposition of an effect algebra, Found. Phys. (Mittelstaedt Festschrift) 40(9) (2010), 1543–1565.
- [7] D. J. Foulis, S. Pulmannová, Centrally orthocomplete effect algebras, Algebra Universalis 64 (2010), 283–307. DOI 10.1007/s00012-010-0100-5
- [8] D. J. Foulis, S. Pulmannová, Hull mappings and dimension effect algebras, Math. Slovaca 61(3) (2011), 485–522. DOI 10.2478/s12175-011-0025-2
- [9] D. J. Foulis, S. Pulmannová, Quotients of dimension effect algebras, Algebra Universalis 67(1) (2012), 81–104.
- [10] D. J. Foulis, S. Pulmannová, The exocenter of a generalized effect algebra, Rep. Math. Phys. 68(3) (2011), 347–371.
- [11] D. J. Foulis, S. Pulmannová, Hull determination and type decomposition for a generalized effect algebra, Algebra Universalis 69(1) (2013), 45–81.
- [12] D. J. Foulis, S. Pulmannová, Dimension theory for a generalized effect algebra, Algebra Universalis 69(4) (2013), 357–386.
- [13] D. J. Foulis, S. Pulmannová, E. Vinceková, The exocenter and type decomposition for a generalized pseudoeffect algebra, to appear in Discussiones Mathamaticae.
- [14] D. J. Foulis, R. J. Greechie, G. T. Rüttimann, Filters and supports in orthoalgebras, Int. J. Theor. Phys. 31(5) (1992), 789–807.
- [15] K. R. Goodearl, Partially Ordered Abelian Groups with Interpolation, American Math. Soc. Math. Surveys and Monographs 20 Providence, R.I., 1986. ISBN 0-8218-1520-2
- [16] R. J. Greechie, D. J. Foulis, S. Pulmannová, The center of an effect algebra, Order 12 (1995), 91–106.
- [17] G. Grätzer, General Lattice Theory, Academic Press, New York, 1978.
- [18] R. Giuntini, H. Greuling, Toward a formal language for unsharp properties, Found. Phys. 19(7) (1989), 931–945.
- [19] J. Harding, Regularity in Quantum Logic, Int. J. Theor. Phys. 37(4) (1998), 1173–1212.
- [20] J. Hedlíková, S. J. Pulmannová, Generalized difference posets and orthoalgebras, Acta Math. Univ. Comenianae 45 (1996), 247–279.
- [21] G. Jenca, Subcentral ideals in generalized effect algebras, Int. J. Theor. Phys. 39 (2000), 745–755.
- [22] G. Jenca, A Cantor–Bernstein type theorem for effect algebras, Algebra Universalis 48 (2002), 399–411.
- [23] G. Jenca, S. Pulmannová, Quotients of partial abelian monoids and the Riesz decomposition property, Algebra Universalis 47 (2002), 443–477.
- [24] G. Kalmbach, Orthomodular Lattices, Academic Press, Inc., London, New York, 1983.
- [25] G. Kalmbach, Z. Riecanová, An axiomatization for abelian relative inverses, Demonstratio Math. 27 (1994), 535–537.
- [26] F. Kôpka, F. Chovanec, D-posets, Math. Slovaca 44 (1994), 21–34.
- [27] A. Mayet-Ippolito, Generalized orthomodular posets, Demonstratio Math. 24 (1991), 263–274.
- [28] D. Mundici, Interpretation of AF C*-algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15–63.
- [29] M. Polakovic, Generalized effect algebras of bounded positive operators defined on Hilbert spaces, to appear in Rep. Math. Phys.
- [30] M. Polakovic, Z. Riecanová, Generalized effect algebras of positive operators densely defined on Hilbert spaces, Int. J. Theor. Phys. 50 (2011), 1167–1174. DOI 10.1007/s10773-010-0458-3 (2010)
- [31] S. Pulmannová, E. Vinceková, Riesz ideals in generalized effect algebras and in their unitizations, Algebra Universalis 57 (2007), 393–417.
- [32] S. Pulmannová, E. Vinceková, Remarks on the order for quantum observables, Math. Slovaca 57(6) (2007), 589–600. DOI 10.2478/s12175-007-0048-x
- [33] Z. Riecanová, Subalgebras, intervals, and central elements of generalized effect algebras, Int. J. Theor. Phys. 38(12) (1999), 3209–3220.
- [34] Z. Riecannová, M. Zajac, S. Pulmannová, Effect algebras of positive linear operators densely defined on Hilbert spaces, Rep. Math. Phys. 68(3) (2011), 261–270.
- [35] R. Sikorski, Boolean Algebras, 2nd ed., Academic Press, New York, Springer Verlag, Berlin (1964).
- [36] A. Wilce, Perspectivity and congruence in partial abelian semigroups, Math. Slovaca 48 (1998), 117–135.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b8e383d-039b-4259-a76e-3f8daa5099ed