PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrovestibulography (EVestG) application for measuring vestibular response to horizontal pursuit and saccadic eye movements

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vestibular effects linked to eye movements have been extensively investigated, however, the effect of eye movements on the vestibular is relatively unknown. In this study, vestibular responses to horizontal pursuit and saccadic eye movements were examined in healthy individuals. Visual stimuli were presented to nineteen participants (27.7 ± 5.74 (SD) years, 11 female) using a virtual reality headset whilst the vestibular responses were simultaneously recorded using Electrovestibulography (EVestG). The average field potentials (FP) of three segments 1) prior to (Pre-Background), 2) during (Movement), and 3) after ceasing the visual stimulus (Post-Background) were extracted and the action potential (AP) area used as one feature. Both pursuit and saccadic eye movements resulted in a smaller average AP area during the Movement compared to Pre-Background (P = 0.002). Pursuit and saccadic eye movements also resulted in significantly longer time intervals between the low frequency (approximately 10 Hz) modulations of FPs detected during Movement compared to the Pre-Background (P≤ 0.001). Moreover, a comparison between rightward and leftward saccades indicated no significant difference between the two directions for the FP and time interval features (P > 0.37). These findings suggest that pursuit and saccade eye movements inhibit the activity of both the central (postulated efferent pathways) and peripheral (afferent) vestibular system. We hypothesize that the purpose of this vestibular inhibition is to limit the vestibulo-ocular reflex and optokinetic response. Additionally, the insensitivity of the vestibular system to the saccade directions with a stationary head provides anecdotal evidence on the bilateral efferent projections to the vestibular afferent and hair cells.
Słowa kluczowe
Twórcy
  • Room SP-429, Stanley Pauley Building, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
  • Biomedical Engineering Program, University of Manitoba, Winnipeg, Canada; Monash Alfred Psychiatry Research Center, Melbourne, Australia
  • Biomedical Engineering Program, University of Manitoba, Winnipeg, Canada
  • Department of Medicine, Section of Neurology, University of Manitoba, Winnipeg, Canada
  • Biomedical Engineering Program, University of Manitoba, Winnipeg, Canada
Bibliografia
  • [1] Thomas NM, Bampouras TM, Donovan T, Dewhurst S. Eye Movements Affect Postural Control in Young and Older Females. Front Aging Neurosci 2016;8:216. https://doi.org/ 10.3389/fnagi.2016.00216.
  • [2] Paige GD, Telford L, Seidman SH, Barnes GR. Human vestibuloocular reflex and its interactions with vision and fixation distance during linear and angular head movement. J Neurophysiol 1998;80(5):2391–404.
  • [3] Curthoys IS, Grant JW, Burgess AM, Pastras CJ, Brown DJ, Manzari L. Otolithic Receptor Mechanisms for VestibularEvoked Myogenic Potentials: A Review. Front Neurol 2018;9:366. https://doi.org/10.3389/fneur.2018.00366.
  • [4] Leigh RJ, Zee DS, editors. The Neurology of Eye MovementsThe Neurology of Eye Movements. Oxford University Press; 2015.
  • [5] Purves D, Augustine G, Fitzpatrick D. Types of Eye Movements and Their Functions 2001:1–2.
  • [6] Longstaff A. Instant notes in neuroscience (BIOS instant notes). second edi. Abingdon: Taylor & Francis; 2005.
  • [7] Fukushima K, Fukushima J, Warabi T, Barnes GR. Cognitive processes involved in smooth pursuit eye movements: Behavioral evidence, neural substrate and clinical correlation. Front Syst Neurosci 2013. https://doi.org/10.3389/ fnsys.2013.00004.
  • [8] Ilg UJ. The role of areas MT and MST in coding of visual motion underlying the execution of smooth pursuit. Vision Res 2008;48(20):2062–9. https://doi.org/10.1016/j. Visres.2008.04.015.
  • [9] Barnes GR. Cognitive processes involved in smooth pursuit eye movements. Brain Cogn 2008;68(3):309–26. https://doi. org/10.1016/j.bandc.2008.08.020.
  • [10] K.G. Gruters D.L. Murphy C.D. Jenson D.W. Smith C. Shera J.M. Groh The eardrums move when the eyes move: A multisensory effect on the mechanics of hearing J Acoust Soc Am 143 3 2018 1845 1845 10.1121/1.5036059.
  • [11] Sadeghi SG, Goldberg JM, Minor LB, Cullen KE. Efferentmediated responses in vestibular nerve afferents of the alert macaque. J Neurophysiol 2009;101(2):988–1001. https://doi. org/10.1152/jn.91112.2008.
  • [12] Fernández C, Goldberg JM. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J Neurophysiol 1976;39:996–1008.
  • [13] Plotnik M, Marlinski V, Goldberg JM. Efferent-Mediated Fluctuations in Vestibular Nerve Discharge: A Novel, PositiveFeedback Mechanism of Efferent Control. J Assoc Res Otolaryngol 2006;6(4):311–23. https://doi.org/10.1007/s10162- 005-0010-y.
  • [14] Mathews MA, Camp AJ, Murray AJ. Reviewing the role of the efferent vestibular system in motor and vestibular circuits. Front Physiol 2017;8:552. https://doi.org/10.3389/ fphys.2017.00552.
  • [15] Ptak R, Mu¨ ri RM. The parietal cortex and saccade planning: Lessons from human lesion studies. Front Hum Neurosci 2013;7:254. https://doi.org/10.3389/fnhum.2013.00254.
  • [16] Missal M, Keller EL. Common inhibitory mechanism for saccades and smooth-pursuit eye movements. J Neurophysiol 2002;88:1880–92. https://doi.org/10.1152/ jn.00060.2002.
  • [17] Krauzlis RJ, Basso MA, Wurtz RH. Discharge Properties of Neurons in the Rostral Superior Colliculus of the Monkey During Smooth-Pursuit Eye Movements. J Neurophysiol 2000;84(2):876–91. https://doi.org/10.1152/jn.2000.84.2.876.
  • [18] Dash S, Yan X, Wang H, Crawford J. Continuous updating of visuospatial memory in superior colliculus during slow eye movements. Curr Biol 2015;25(3):267–74. https://doi.org/ 10.1016/j.cub.2014.11.064.
  • [19] Lithgow B. A Methodology for Detecting Field Potentials from the External Ear Canal : NEER and EVestG. Ann Biomed Eng 2012;408:1835–50. https://doi.org/10.1007/s10439-012-0526-3.
  • [20] Ashiri M, Lithgow B, Suleiman A, Blakley B, Mansouri B, Moussavi Z. Differences Between Physical vs. Virtual Evoked Vestibular Responses. Ann Biomed Eng 2020;48(4):1241–55. https://doi.org/10.1007/s10439-019-02446-3.
  • [21] Ashiri M, Lithgow B, Mansouri B, Moussavi Z. Comparison between vestibular responses to a physical and virtual reality rotating chair. ACM Int. Conf. Proceeding Ser., New York, NY, USA: Association for Computing Machinery; 2020, p. 1–4. https://doi.org/10.1145/3396339.3396392.
  • [22] Ashiri M, Lithgow B, Suleiman A, Moussavi Z, Mansouri B. Visio-Vestibular Interaction in Humans: Changes in the Vestibular Response Following Visual Stimuli of Different Colors. J Med Biol Eng 2019;39(2):238–43. https://doi.org/ 10.1007/s40846-018-0425-7.
  • [23] Ashiri M, Lithgow B, Suleiman A, Mansouri B, Moussavi Z. Quantitative measures of the visually evoked sensation of body movement in space (Vection) using Electrovestibulography (EVestG). Virtual Real 2020. https:// doi.org/10.1007/s10055-020-00488-w.
  • [24] Blakley B, Suleiman A, Rutherford G, Moussavi Z, Lithgow B. EVestG Recordings are Vestibuloacoustic Signals. J Med Biol Eng 2019;39(2):213–7. https://doi.org/10.1007/s40846-018- 0398-6.
  • [25] Lithgow BJ, Moussavi Z, Gurvich C, Kulkarni J, Maller JJ, Fitzgerald PB. Bipolar disorder in the balance. Eur Arch Psychiatry Clin Neurosci 2019;269(7):761–75. https://doi.org/ 10.1007/s00406-018-0935-x.
  • [26] Suleiman A, Lithgow B, Mansouri B, Moussavi Z. Investigating the validity and reliability of Electrovestibulography (EVestG) for detecting post-concussion syndrome (PCS) with and without comorbid depression. Sci Rep 2018;8:14495. https:// doi.org/10.1038/s41598-018-32808-1.
  • [27] Dastgheib ZA, Lithgow B, Blakley B, Moussavi Z. A new diagnostic vestibular evoked response. J Otolaryngol Head Neck Surg 2015;44:14. https://doi.org/10.1186/s40463-015- 0065-7.
  • [28] Lithgow BJ, Moussavi Z, Fitzgerald PB. Quantitative separation of the depressive phase of bipolar disorder and major depressive disorder using electrovestibulography. World J Biol Psychiatry 2019;20(10):799–812. https://doi.org/ 10.1080/15622975.2019.1599143.
  • [29] Lithgow BJ, Garrett AL, Moussavi ZM, Gurvich C, Kulkarni J, Maller JJ, et al. Major depression and electrovestibulography. World J Biol Psychiatry 2015;16(5):334–50. https://doi.org/ 10.3109/15622975.2015.1014410.
  • [30] SIMES RJ. An improved Bonferroni procedure for multiple tests of significance. Biometrika 1986;73(3):751–4. https://doi. org/10.1093/biomet/73.3.751.
  • [31] Brown DJ, Patuzzi RB. Evidence that the compound action potential (CAP) from the auditory nerve is a stationary potential generated across dura mater. Hear Res 2010;267(1- 2):12–26. https://doi.org/10.1016/j.heares.2010.03.091.
  • [32] Suleiman A, Lithgow B, Dastghieb Z, Mansouri B, Moussavi Z. Quantitative measurement of post-concussion syndrome Using Electrovestibulography. Sci Rep 2017;7:16371. https:// doi.org/10.1038/s41598-017-15487-2.
  • [33] Brown DJ, Pastras CJ, Curthoys IS. Electrophysiological Measurements of Peripheral Vestibular Function—A Review of Electrovestibulography. Front Syst Neurosci 2017;11:1–17. https://doi.org/10.3389/fnsys.2017.00034.
  • [34] Heibert D, Lithgow B. Modelling the vestibular head tilt response. Australas Phys Eng Sci Med 2005;28(1):37–42. https://doi.org/10.1007/BF03178862.
  • [35] Marlinsky VV. The effect of somatosensory stimulation on second-order and efferent vestibular neurons in the decerebrate decerebellate guinea-pig. Neuroscience 1995;69 (2):661–9. https://doi.org/10.1016/0306-4522(95)00231-7.
  • [36] Mathews MA, Camp AJ, Murray AJ. Corrigendum: Reviewing the role of the efferent vestibular system in motor and vestibular circuits [Front. Physiol., 8, (2017) (552)] DOI: 10.3389/fphys.2017.00552. Front Physiol 2018;9:1–15. Doi: 10.3389/fphys.2018.00687.
  • [37] Krauzlis RJ, Dill N. Neural correlates of target choice for pursuit and saccades in the primate superior colliculus. Neuron 2002;35(2):355–63. https://doi.org/10.1016/S0896-6273 (02)00756-0.
  • [38] Orban De Xivry JJ, Lefe`vre P. Saccades and pursuit: Two outcomes of a single sensorimotor process. J Physiol 2007;584:11–23. Doi: 10.1113/jphysiol.2007.139881.
  • [39] Munoz DP, Istvan PJ. Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. J Neurophysiol 1998;79:1193–209. https://doi.org/10.1002/ cne.903020111.
  • [40] Yakushin SB, Raphan T, Cohen B. Coding of velocity storage in the vestibular nuclei. Front Neurol 2017;8:1–19. https://doi. org/10.3389/fneur.2017.00386.
  • [41] Sparks DL, Travis RP. Firing patterns of reticular formation neurons during horizontal eye movements. Brain Res 1971;33(2):477–81. https://doi.org/10.1016/0006-8993(71) 90120-X.
  • [42] Behnke S. Neurobiological Background 2003:17–33. https:// doi.org/10.1007/978-3-540-45169-3_2.
  • [43] Termsarasab P, Thammongkolchai T, Rucker JC, Frucht SJ. The diagnostic value of saccades in movement disorder patients: a practical guide and review. J Clin Mov Disord 2015;2:14. https://doi.org/10.1186/s40734-015-0025-4.
  • [44] Cloherty SL, Mustari MJ, Rosa MGP, Ibbotson MR. Effects of saccades on visual processing in primate MSTd. Vision Res 2010;50(24):2683–91. https://doi.org/10.1016/j. Visres.2010.08.020.
  • [45] Bartlett AM, Ovaysikia S, Logothetis NK, Hoffman KL. Behavioral/Systems/Cognitive Saccades during Object Viewing Modulate Oscillatory Phase in the Superior Temporal Sulcus 2011. Doi: 10.1523/JNEUROSCI.4102- 11.2011.
  • [46] Hoffman KL, Dragan MC, Leonard TK, Micheli C, MontefuscoSiegmund R, Valiante TA. Saccades during visual exploration align hippocampal 3–8 Hz rhythms in human and nonhuman primates. Front Syst Neurosci 2013;7:43. https://doi. org/10.3389/fnsys.2013.00043.
  • [47] Missal M, Heinen SJ. Stopping smooth pursuit. Philos Trans R Soc B Biol Sci 2017;372(1718):20160200. https://doi.org/ 10.1098/rstb.2016.0200.
  • [48] Kowler E, Rubinstein JF, Santos EM, Wang J. Predictive Smooth Pursuit Eye Movements. Annu Rev Vis Sci 2019;5(1):223–46. https://doi.org/10.1146/annurev-vision-091718-014901.
  • [49] Srimal R, Curtis CE. Secondary adaptation of memory-guided saccades. Exp Brain Res 2010;206(1):35–46. https://doi.org/ 10.1007/s00221-010-2394-0.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b8c904b-6796-4ded-9b46-6799b0d88d9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.