PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical Properties of X3NiCoMoTi 18-9-5 Produced via Additive Manufacturing Technology – Numerical and Experimental Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the article is to analyze the influence of print orientation, using the DLMS method, on the strength of the tested material before and after heat treatment. The heat treatment involved heating the material to 490˚C and subsequently cooling it within the furnace for four hours. Experimental research involves X3NiCoMoTi 18-9-5 tool steel. Analysis of the test results indicates a strength increase following heat treatment. Additionally, a numerical study was conducted to investigate the mechanical characteristics of X3NiCoMoTi 18-9-5 tool steel fabricated via 3D printing. Fractographic analysis of specimen failure was performed, and the results were subsequently compared.
Twórcy
  • Department of Mechanics and Machine Design, Faculty of Mechanical Engineering, Opole University of Technology, ul. Mikołajczyka 5, 46-020 Opole, Poland
  • Science and Technology Park in Opole, ul. Technologiczna 2, 45-839 Opole, Poland
  • Department of Manufacturing and Materials Engineering, Faculty of Mechanical Engineering, Opole University of Technology, ul. Mikołajczyka 5, 46-020 Opole, Poland
autor
  • Department of Mechanics and Machine Design, Faculty of Mechanical Engineering, Opole University of Technology, ul. Mikołajczyka 5, 46-020 Opole, Poland
Bibliografia
  • 1. Javaid M., Haleem A., Singh R.P., Suman R. 3D printing applications for healthcare research and development. Global Health Journal 2022; 6: 217–26. https://doi.org/10.1016/j.glohj.2022.11.001.
  • 2. Zhang M., Sun C.-N., Zhang X., Goh P.C., Wei J., Hardacre D., Li H. High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach. Int J Fatigue 2019; 128: 105194. https://doi.org/10.1016/j.ijfatigue.2019.105194
  • 3. Chua C.K., Leong K.F. 3D Printing and additive manufacturing: Principles and applications (with companion media pack) - fourth edition of rapid prototyping. 2014. https://doi.org/10.1142/9008.
  • 4. Tan X.P., Tan Y.J., Chow C.S.L., Tor S.B., Yeong W.Y. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Materials Science and Engineering: C 2017; 76: 1328–43. https://doi.org/10.1016/j.msec.2017.02.094
  • 5. Strickland J.D. Applications of additive manufacturing in the marine industry. Proceedings of PRADS, Denmark 2016.
  • 6. Yap C.Y., Chua C.K., Dong Z.L., Liu Z.H., Zhang D.Q., Loh L.E., Loh L.E, Sing S.L. Review of selective laser melting: Materials and applications. Appl Phys Rev 2015; 2. https://doi.org/10.1063/1.4935926.
  • 7. Wu P., Wang J., Wang X. A critical review of the use of 3-D printing in the construction industry. Autom Constr 2016; 68: 21–31. https://doi.org/10.1016/j.autcon.2016.04.005.
  • 8. Despeisse M., Ford S. The role of additive manufacturing in improving resource efficiency and sustainability, 2015, 129–36. https://doi.org/10.1007/978-3-319-22759-7_15.
  • 9. Raj A.B., Jappes J.T.W., Khan M.A., Dillibabu V., Brintha N.C. Direct metal laser sintered (DMLS) process to develop Inconel 718 alloy for turbine engine components. Optik (Stuttg) 2020; 202: 163735. https://doi.org/10.1016/j.ijleo.2019.163735.
  • 10. Humnabad P.S., Tarun R., Das I. An overview of direct metal laser sintering (DMLS) technology for metal 3D printing. Journal of Mines, Metals and Fuels 2022; 70: 127. https://doi.org/10.18311/jmmf/2022/30681.
  • 11. Narasimharaju S.R., Liu W., Zeng W., See T.L., Scott P., Jiang X.J., Lou S. Surface texture characterization of metal selective laser melted part with varying surface inclinations. J Tribol 2021;143. https://doi.org/10.1115/1.4050455.
  • 12. Zhu Z., Lou S., Majewski C. Characterisation and correlation of areal surface texture with processing parameters and porosity of High Speed Sintered parts. Addit Manuf 2020; 36: 101402. https://doi.org/10.1016/j.addma.2020.101402.
  • 13. Gibson I., Rosen D., Stucker B. Additive manufacturing technologies. New York, NY: Springer New York; 2015. https://doi.org/10.1007/978-1-4939-2113-3.
  • 14. Bak D. Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assembly Automation 2003; 23: 340–5. https://doi.org/10.1108/01445150310501190.
  • 15. Kim K.-S., Hwang J.-W., Lee K.-A. Effect of building direction on the mechanical anisotropy of biocompatible Co–Cr–Mo alloy manufactured by selective laser melting process. J Alloys Compd 2020; 834: 155055. https://doi.org/10.1016/j.jallcom.2020.155055.
  • 16. Srivastava A.K., Dubey A., Kumar M., Dwivedi S.P., Singh R.K., Kumar S. Measurement of form errors and comparative cost analysis for the component developed by metal printing (DMLS) and stir casting. Instrumentation Mesure Metrologie 2020; 19: 363–9. https://doi.org/10.18280/i2m.190506.
  • 17. Crisafulli D., Fintová S., Santonocito D., D’Andrea D. Microstructural characterization and mechanical behaviour of laser powder Bed Fusion stainless steel 316L. Theoretical and Applied Fracture Mechanics 2024; 131: 104343. https://doi.org/10.1016/j.tafmec.2024.104343.
  • 18. Wohler. Wohler’s report 2024.
  • 19. Nicoletto G. Anisotropic high cycle fatigue behavior of Ti–6Al–4V obtained by powder bed laser fusion. Int J Fatigue 2017; 94: 255–62. https://doi.org/10.1016/j.ijfatigue.2016.04.032.
  • 20. Avanzini A., Battini D., Gelfi M., Girelli L., Petrogalli C., Pola A., Tocci M. Investigation on fatigue strength of sand-blasted DMLS-AlSi10Mg alloy. Procedia Structural Integrity 2019; 18: 119–28. https://doi.org/10.1016/j.prostr.2019.08.146.
  • 21. Ullah R., Akmal J.S., Laakso S.V.A., Niemi E. Anisotropy of additively manufactured AlSi10Mg: threads and surface integrity. The International Journal of Advanced Manufacturing Technology 2020; 107: 3645–62. https://doi.org/10.1007/s00170-020-05243-8.
  • 22. Cordin M., Bechtold T., Pham T. Effect of fibre orientation on the mechanical properties of polypropylene–lyocell composites. Cellulose 2018; 25: 7197–210. https://doi.org/10.1007/s10570-018-2079-6.
  • 23. Zargarian A., Esfahanian M., Kadkhodapour J., Ziaei-Rad S., Zamani D. On the fatigue behavior of additive manufactured lattice structures. Theoretical and Applied Fracture Mechanics 2019; 100: 225–32. https://doi.org/10.1016/j.tafmec.2019.01.012.
  • 24. Azar A.S. Exploring the stress concentration factor in additively manufactured materials: A machine learning perspective on surface notches and subsurface defects. Theoretical and Applied Fracture Mechanics 2024; 130: 104298. https://doi.org/10.1016/j.tafmec.2024.104298.
  • 25. Miozga R., Kurek M. Effect of print orientation using DMLS method on strength of materials. MATEC Web of Conferences 2021; 338. https://doi.org/10.1051/matecconf/202133801017.
  • 26. EOS. Technical description of EOSINT M280 n.d. 27. Chadha K., Tian Y., Bocher P., Spray J.G., Aranas C. Microstructure evolution, mechanical properties and deformation behavior of an additively manufactured maraging steel. Materials 2020; 13: 2380. https://doi.org/10.3390/ma13102380.
  • 28. Sangaletti S., Aranda M.T., Távara L., García I.G. Effect of stacking direction and raster angle on the fracture properties of Onyx 3D printed components: A mesoscale analysis. Theoretical and Applied Fracture Mechanics 2024; 129: 104228. https://doi.org/10.1016/j.tafmec.2023.104228.
  • 29. Kopec M., Gunputh U.F., Macek W., Kowalewski Z.L., Wood P. Orientation effects on the fracture behaviour of additively manufactured stainless steel 316L subjected to high cyclic fatigue. Theoretical and Applied Fracture Mechanics 2024; 130: 104287. https://doi.org/10.1016/j.tafmec.2024.104287.
  • 30. Mutua J., Nakata S., Onda T., Chen Z.-C. Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater Des 2018; 139: 486–97. https://doi.org/10.1016/j.matdes.2017.11.042
  • 31. Bai Y., Wang D., Yang Y., Wang H. Effect of heat treatment on the microstructure and mechanical properties of maraging steel by selective laser melting. Materials Science and Engineering: A 2019; 760: 105–17. https://doi.org/10.1016/j.msea.2019.05.115.
  • 32. Instron. Technical description of Instron ElecroPlus E10000 n.d.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b870e8c-32e0-424c-96e1-8a53a8371ec9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.