PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Random shear resistance of a headed-stud connector in composite steel-concrete beam

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Losowa nośność na ścinanie łącznika sworzniowego z główką w belkach zespolonych typu stal-beton
Języki publikacji
EN
Abstrakty
EN
In the traditional, standard, computational approach, the shear resistance of a single headed-stud connector, ensuring the composite connection between a steel beam and a reinforced concrete slab resting on this beam, is determined by comparing the load capacity PRs – determined by the destruction of the steel connector itself, and the load capacity PRc – conditioned by the destruction of the concrete surrounding this connector. In a single implementation, the smaller of these both values, i.e. PR = min (PRs, PRc ), is authoritative for the designer. If, however, both combined strengths are treated as the random variables and a statistically homogeneous sample grouping potentially possible implementations of this type is taken into account, then the design resistance PR,d = [min (PRs, PRc)]d, representative for the verification of ultimate limit state for the considered connection, will be quantitatively different from the value PR,d = min (PRs,d; PRc,d) recommended for use in this regard in the standard EN 1994-1-1. In this paper a detailed algorithm for the correct specification of this value is presented in detail. The dependence of such value on the mutual relationship between the coefficients determining the statistical variability of the strength of the connector steel as well as the strength of the concrete from which the floor slab was made is also demonstrated. The proposed approach is based on the fully probabilistic design format, according to which the appropriate level of the probability of reliable work of the analyzed connection is ensured. The presented considerations are illustrated with a numerical example. On its basis, the degree of simplification of such evaluation is estimated, as well as its consequences, resulting from the use of a conventional standard model in this respect.
PL
W tradycyjnym, normowym, ujęciu obliczeniowym nośność na ścinanie pojedynczego łącznika sworzniowego z główką, zapewniającego zespolenie belki stalowej z opartą na tej belce płytą żelbetową, określana jest przez porównanie ze sobą nośności PRs – determinowanej zniszczeniem samego łącznika stalowego, oraz nośności PRc – warunkowanej zniszczeniem betonu otaczającego ten łącznik. W pojedynczej realizacji miarodajną dla projektanta jest mniejsza z tych wartości, a zatem PR = min (PRs, PRc). Jeżeli obie zestawione ze sobą wytrzymałości potraktować jako zmienne losowe i rozpatrywać statystycznie jednorodną próbę grupującą realizacje potencjalnie możliwe to obliczeniowa nośność PR,d = [min (PRs, PRc)]d, reprezentatywna dla weryfikacji stanu granicznego nośności rozpatrywanego połączenia, będzie ilościowo różna od wartości PR,d = min (PRs,d, PRc,d) zalecanej do stosowania w normie EN 1994-1-1. W niniejszej pracy pokazano szczegółowy algorytm poprawnego specyfikowania tej wartości. Wykazano jej zależność od wzajemnej relacji pomiędzy współczynnikami określającymi statystyczną zmienność wytrzymałości stali łącznika i wytrzymałości betonu, z którego wykonano płytę stropową. Zaproponowane podejście opiera się na w pełni probabilistycznym formacie obliczeń, w którym gwarantuje się odpowiednie prawdopodobieństwo niezawodnej pracy analizowanego połączenia. Rozważania zilustrowano przykładem numerycznym. Na jego podstawie oszacowano stopień uproszczenia, a także jego konsekwencje, wynikające z zastosowania w tym zakresie konwencjonalnego modelu normowego.
Twórcy
  • State University of Applied Sciences in Jaroslaw, Institute of Technical Engineering, Jaroslaw, Poland
  • Cracow University of Technology, Faculty of Civil Engineering, Chair of Bridge, Metal and Timber Structures, Cracow, Poland
Bibliografia
  • [1] F. Wald, J. Hofmann, U. Kuhlmann, et al., Design of steel-to-concrete joints. Design manual. Prague, Stuttgart, Coimbra, Brussels: European Convention for Constructional Steelwork, 2014.
  • [2] A. Shariati, N.H. Ramli Sulong, M. Suhatril, and M. Shariati, “Various types of shear connectors in composite structures: a review”, International Journal of Physical Sciences, vol. 7, no. 22, pp. 2876-90, 2012, doi: 10.5897/IJPSX11.004.
  • [3] L. Pallarés and J.F. Hajjar, Headed steel stud anchors in composite structures: Part I – Shear. NSEL Report Series, Report No. NSEL-013. Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, USA, 2009.
  • [4] L. Pallarés and J.F. Hajjar, Headed steel stud anchors in composite structures: Part II – Tension and interaction. NSEL Report Series, Report No. NSEL-014. Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, USA, 2009.
  • [5] R. Liu, Z. Feng, H. Ye, and Y. Liu, “Stress redistribution of headed stud connectors subjected to constant shear force”, International Journal of Steel Structures, vol. 20, pp. 436-451, 2020, doi: 10.1007/s13296-019-00295-3.
  • [6] H. Meng, W. Wang, and R. Xu, “Analytical model for the load-slip behaviour of headed stud shear connectors”, Engineering Structures, vol. 252, art. no. 113631, 2022, doi: 10.1016/j.engstruct.2021.113631.
  • [7] H. Meng, W. Wang, and R. Xu, “A trilinear model for the load-slip behaviour of headed stud shear connectors”, Materials, vol. 16, no. 3, art. no. 1173, 2023, doi: 10.3390/ma16031173.
  • [8] S.J. Hicks, “Design shear resistance of headed studs embedded in solid slabs and encasements”, Journal of Constructional Steel Research, vol. 139, pp. 339-352, 2017, doi: 10.1016/j.jcsr.2017.09.018.
  • [9] N.S. Anderson and D.F. Meinheit, “Pryout capacity of cast-in headed stud anchors”, The Precast / Prestressed Concrete Institute (PCI) Journal, vol. 50, no. 2, pp. 90-112, 2005. doi: 10.15554/pcij.03012005.90.112.
  • [10] G. Couchman, Minimum degree of shear connection rules for UK construction to Eurocode 4. Steel Construction Institute (SCI) Publication P405. Silwood Park, Ascot, Berkshire, UK, 2015.
  • [11] J. Qi, J. Wang, M. Li, and L. Chen, “Shear capacity of stud shear connectors with initial damage: experiment, FEM model and theoretical formulation”, Steel and Composite Structures, vol. 25, no. 1, pp. 79-92, 2017, doi: 10.12989/scs.2017.25.1.079.
  • [12] P.S. Patil and M.G. Shaikh, “A Study of effect of shear connector in composite beam in combined bending and shear by Ansys”, International Journal of Innovative Technology and Exploring Engineering (IJITEE), vol. 3, no. 3, pp. 67-74, 2013.
  • [13] X. Xu, S. Zeng, W. He, Z. Hou, D. He, and T. Yang, “Numerical study on the tensile performance of headed stud shear connectors with head-sectional damage”, Materials, vol. 15, no. 8, art. no. 2802, 2022, doi: 10.3390/ma15082802.
  • [14] S.M. Hosseini, F. Mashiri, and O. Mirza, “Research and developments on strength and durability prediction of composite beams utilising bolted shear connectors (Review)”, Engineering Failure Analysis, vol. 117, art. no. 104790, 2020, doi: 10.1016/j.engfailanal.2020.104790.
  • [15] R. Liu, X. Sun, H. Ye, and Y. Liu, “Analytical study on time-dependent stiffness of stud shear connectors”, Frontiers in Mechanical Engineering, vol. 8, 2022, doi: 10.3389/fmech.2022.884111.
  • [16] A.I. Hassanin, H.F. Shabaan, and A.I. Elsheikh, “The effects of shear stud distribution on the fatigue behaviour of steel-concrete composite beams”, Arabian Journal for Science and Engineering, vol. 45, pp. 8403-8426, 2020, doi: 10.1007/s13369-020-04702-4.
  • [17] M. Pavlović, Z. Marković, M. Veljković, and D. Budevac, “Bolted shear connectors vs. headed studs behaviour in push-out tests”, Journal of Constructional Steel Research, vol. 88, pp. 134-149, 2013, doi: 10.1016/j.jcsr.2013.05.003.
  • [18] S.J. Hicks and A.L. Smith, “Stud shear connectors in composite beams that support slabs with profiled steel sheeting”, Structural Engineering International, vol. 24, no. 2, pp. 246-253, 2014, doi: 10.2749/101686614X13830790993122.
  • [19] H.S. Vohra and M.A. Dhankot, “Shear connectors and composite deck slab experimental study – State of the art review”, International Journal of Scientific Engineering and Research (IJSER), vol. 3, no. 3, pp. 21-24, 2015.
  • [20] V. Vigneri, S.J. Hicks, A. Taras, and Ch. Odenbreit, “Design models for predicting the resistance of headed studs in profiled sheeting”, Steel and Composite Structures, vol. 42, no. 5, pp. 633-647, 2022, doi: 10.12989/scs.2022.42.5.633.
  • [21] V. Vigneri, Ch. Odenbreit, and D. Lam, “Different load bearing mechanisms in headed stud shear connectors for composite beams with profiled steel sheeting”, Steel Construction. Design and Research, vol. 12, no. 3, pp. 184-190, 2019, doi: 10.1002/stco.201900019.
  • [22] V. Vigneri, Ch. Odenbreit, and M. Braun, “Numerical evaluation of the plastic hinges developed in headed stud shear connectors in composite beams with profiled steel sheeting, in Proceedings of the 12th International Conference on Advances in Steel-Concrete Composite Structures (ASCCS 2018). Spain: Universitat Politècnica de València, 2018, pp. 229-236, doi: 10.4995/ASCCS2018.2018.7166.
  • [23] J.D.B. Rocha, C.A.R. Morfa, L.M. Bezerra, E.M. Arrizabalaga, and R.L. Quevedo, “Study of stud shear connectors behaviour in composite beams with profiled steel sheeting”, Journal of Construction (Revista de la Constructión), vol. 14, no. 3, pp. 47-54, 2015, doi: 10.4067/S0718-915X2015000300006.
  • [24] A.A. Dönmez, “Size effect on the shear capacity of headed studs”, Advances in Structural Engineering, vol. 24, no. 4, pp. 815-826, 2021, doi: 10.1177/1369433220969030.
  • [25] J. Qureshi, D. Lam, and J. Yea, “Effect of shear connector spacing and layout on the shear connector capacity in composite beams”, Journal of Constructional Steel Research, vol. 67, no. 4, pp. 706-719, 2011, doi: 10.1016/j.jcsr.2010.11.009.
  • [26] N.S. Anderson and D.F. Meinheit, “Design criteria for headed stud groups in shear: Part 1: Steel capacity and back edge effects”, The Precast / Prestressed Concrete Institute (PCI) Journal, vol. 45, no. 5, pp. 46-75, 2000, doi: 10.15554/pcij.09012000.46.75.
  • [27] M. Spremić, Z. Marković, J. Dobrić, M. Veljković, and D. Budevac, “Shear connection with groups of headed studs”, Gradevinar, vol. 69, no. 5, pp. 379-386, 2017, doi: 10.14256/JCE.1701.2016.
  • [28] V. Jayanthi and C. Umarani, “Performance evaluation of different types of shear connectors in steel-concrete composite construction”, Archives of Civil Engineering, vol. 64, no. 2, pp. 97-110, 2018, doi: 10.2478/ace-2018-0019.
  • [29] X. Dai, D. Lam, T. Sheehan, J. Yang, and K. Zhou, “Use of bolted shear connectors in composite construction”, in Proceedings of the 12th International Conference on Advances in Steel-Concrete Composite Structures (ASCCS 2018). Universitat Politècnica de València, 2018, pp. 475-482, doi: 10.4995/ASCCS2018.2018.7039.
  • [30] J. Chen, W. Wang, F.-X. Ding, et al., “Behaviour of an advanced bolted shear connector in prefabricated steel-concrete composite beams”, Materials, vol. 12, no. 18, art. no. 2958, 2019, doi: 10.3390/ma12182958.
  • [31] C. Wang, D. Cao, X. Liu, et al., “Initial elastic stiffness of bolted shear connectors in steel-concrete composite structures”, Advances in Civil Engineering, vol. 2022, 7008727, 2022, doi: 10.1155/2022/7008727.
  • [32] EN 1994-1-1 Eurocode 4: Design of composite steel concrete structures. Part 1-1: General rules and rules for buildings.
  • [33] T. Domański and M. Maślak, “Obliczeniowa nośność połączenia sworzniowego w belkach zespolonych”, in Zespolone Konstrukcje Mostowe: teoria, badania, projektowanie, realizacja, utrzymanie, wzmacnianie: Konferencja Naukowo-Techniczna Kraków, 13-15 May, 2009, L. Szopa, M. Pańtak, B. Jarek, Eds. Kraków, 2009, pp. 97-105.
  • [34] T. Domański and M. Maślak, “Miarodajna obliczeniowa nośność sworznia w belkach zespolonych”, Obiekty Inżynierskie, no. 2, pp. 23-27, 2009.
  • [35] M. Maślak and T. Domański, “Design value of a headed stud shear resistance in composite steel-concrete beams – probability-based approach to evaluation”, in Proceedings of the 12th International Conference on Advances in Steel – Concrete Composite Structures (ASCCS 2018), V. Albero, et al., Eds. València, Spain, 2018, pp. 237-242.
  • [36] J.R. Benjamin and C.A. Cornel, Probability, statistics, and decision for civil engineers. Mineola, New York: Dover Publications Inc., 2014.
  • [37] EN 1990 Eurocode – Basis of structural design.
Identyfikator YADDA
bwmeta1.element.baztech-6b839cf7-e182-45d3-b033-63233de27149