PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Possibilities of improving a rail vehicle running safety with independently rotating wheels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work is focused on the possible ways of improving the running safety of a railway vehicle, which uses IRWs (independently rotating wheels) in a bogie. It discusses the main positive and negative properties of an application of IRWs for a railway vehicle while it is running in a curve. There are evaluated running properties of a railway vehicle in terms of safety for IRWs and a standard wheelset (SW). It is assumed that a wheelset design with IRWs will reduce the risk of derailment of a railway vehicle in a curve with a smaller radius because it will be reached a more favourable distribution of decisive forces in the wheel/rail contact. A designed wheelset with IRWs differs from other IRWs designs; in this case, only a flange can rotate independently from a wheel treat surface about the axis of rotation. Further, this research presents an analysis of a friction forces distribution of the friction forces in a contact of a flange and a rail head and a comparison with an SW. The obtained results allow concluding that it is advisable to use the wheels with the perspective wheel design (including independently rotating) to reduce the resistance to movement and improve the running properties of a railway vehicle for safety.
Rocznik
Tom
Strony
93--106
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
  • Educational and Scientific Institute of Transport and Building, Volodymyr Dahl East Ukrainian National University, Central Avenue 59A/303, Severodonetsk, Ukraine
  • Educational and Scientific Institute of Transport and Building, Volodymyr Dahl East Ukrainian National University, Central Avenue 59A/303, Severodonetsk, Ukraine
  • Educational and Scientific Institute of Transport and Building, Volodymyr Dahl East Ukrainian National University, Central Avenue 59A/303, Severodonetsk, Ukraine
autor
  • Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  • Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
Bibliografia
  • 1. Zhang Dawei, Peijuan Xu, Daniele Bigoni. 2019. „Application and comparison of uncertainty quantification methods for railway vehicle dynamics with random mechanical parameters“. Mechanika 25(6): 455-462. ISSN: 1392-1207
  • 2. Zhussupov Kenes, Aliya Toktamyssova, Seidulla Abdullayev, Gabit Bakyt, Manarbek Yessengaliyev. 2018. „Investigation of the stress-strain state of a wheel flange of the locomotive by the method of finite element modeling“. Mechanika 24(2): 174-181. ISSN: 1392-1207
  • 3. Dukkipati Rao V., Swamy S. Narayana, Osman Mohammad O.M. 1992. „Independently rotating wheel systems for railway vehicles - A state-of-the-art review”. Vehicle System Dynamics 21(1): 297-330. ISSN: 0042-3114. DOI: https://doi.org/10.1080/00423119208969013.
  • 4. Liang B., S. Iwnicki. 2007. „An experimental study of independently rotating wheels for railway vehicles“. In: IEEE International Conference On Mechatronics And Automation I-V: 2282-2286. August 05-08, Harbin, China.
  • 5. Zaazaa Khaled E., Brian Whitten. 2008. „Effect of independently rotating wheels on the dynamic performance of railroad vehicles“. In: Рroceedings of the ASME International Mechanical Engineering Congress and Exposition 2007: 467-477. November 11-15, Seattle, WA, USA.
  • 6. Nabilah Farhat, Christopher Ward, Omar Shaebi, David Crosbee, Julian Stow, Ruichen Wang, Roger Goodall, Martin Whitley. 2020. „Controlling a Rail Vehicle with Independently-Rotating Wheels“. In: Advances in Dynamics of Vehicles on Roads and Tracks 1925. Edited by Matthijs Klomp, Fredrik Bruzelius, Jens Nielsen, Angela Hillemyr. Gothenburg, Sweden: Springer. ISBN: 978-3-030-38077-9. DOI: https://doi.org/10.1007/978-3-030-38077-9.
  • 7. Bracciali Andrea. 2016. „Railway Wheelsets: History, Research and Developments“. International Journal of Railway Technology 5(1): 23-52. ISSN: 2049-5358. DOI: https://doi.org/10.4203/ijrt.5.1.2.
  • 8. Goodal Roger, Li Hong. 2000. „Solid axle and independently-rotating railway wheelsets - a control engineering assessment of stability“. Vehicle System Dynamics 33(1): 57-67. ISSN: 0042-3114. DOI: https://doi.org/10.1076/0042-3114(200001)33:1;1-5;FT057.
  • 9. Kostrzewski Mariusz, Rafał Melnik. 2017. „Numerical dynamics study of a rail vehicle with differential gears“. Procedia Engineering 192: 439-444. ISSN: 1877-7058. DOI: https://doi.org/10.1016/j.proeng.2017.06.076.
  • 10. Bracciali Andrea, Megna Gianluca. 2016. „Contact mechanics issues of a vehicle equipped with partially independently rotating wheelsets“. Wear 366-367: 233-240. ISSN: 0043-1648. DOI: https://doi.org/10.1016/j.wear.2016.03.037.
  • 11. Perez J., J.M. Busturia, Mei Tan Xue, Vinolas Jordi. 2004. „Combined active steering and traction for mechatronic bogie vehicles with independently rotating wheels”. In: 2nd IFAC Conference on Mechatronic Systems: 207-217. IFAC. December 09-11, Berkeley, CA, USA. ISSN: 1367-5788. DOI: https://doi.org/10.1016/j.arcontrol.2004.02.004.
  • 12. Kapitsa Mikhail, Evgeni Mikhailov, Sergii Kliuiev, Stanislav Semenov, Maksim Kovtanets. 2019. „Study of rail vehicles movement characteristics improvement in curves using fuzzy logic mechatronic systems“. MATEC Web of Conferences 294: 03019. ISSN: 2261-236X. DOI: https://doi.org/10.1051/matecconf/201929403019.
  • 13. Mikhailov Evgeny, Juraj Gerlici, Sergey Kliuiev, Stanislav Semenov, Tomas Lack, Kateryna Kravchenko. 2019. „Mechatronic system of control position of wheel pairs by railway vehicles in the rail track“. AIP Conference Proceedings 2198: 020009. ISSN: 0094-243X. DOI: https://doi.org/10.1063/1.5140870.
  • 14. Fu Bin, Rocco Libero Giossi, Rickard Persson, Sebastian Stichel, Stefano Bruni, Roger Goodall. 2020. „Active suspension in railway vehicles: A literature survey“. Railway Engineering Science 28(1): 3-35. ISSN: 2662-4753. DOI: https://doi.org/10.1007/s40534-020-00207-w.
  • 15. Dvorak Zdeněk, Bohuš Leitner, Ladislav Novak. 2015. „Software support for railway traffic simulation under restricted conditions of the rail section“. In: Proceedings of the 9th International Scientific Conference TRANSBALTICA 2015: 245-255. Vilnius Gediminas Technical University. May 07-08, Vilnius, Lithuania. ISSN: 1877-7058. DOI: https://doi.org/10.1016/j.proeng.2016.01.066.
  • 16. Upadhyay R. 2000. „Reduced wear wheels and railway“. International Railway Journal 7: 33-34.
  • 17. Mašek Jaroslav, Martin Kendra, Sanjin Milinković, Slavko Vesković, Dalibor Barta. 2015. „Proposal and application of methodology of revitalisation of regional railway track in Slovakia and Serbia. Part 1: theoretical approach and proposal of methodology for revitalisation of regional railways“. Transport Problems 10: 85-95. ISSN: 1896-0596. DOI: https://doi.org/10.21307/tp-2015-064.
  • 18. Leitner Bohuš, Lenka Môcová, Martin Hromada. 2017. „A new approach to identification of critical elements in railway infrastructure“. In: Proceedings of the 10th International Scientific Conference on Transportation Science and Technology TRANSBALTICA 2017: 143-149. Vilnius Gediminas Technical University. May 04-05, Vilnius, Lithuania. ISSN: 1877-7058. DOI: https://doi.org/10.1016/j.proeng.2017.04.360.
  • 19. Wilson Nicholas, Xinggao Shu, Ken Kramp. 2004. „Effects of independently rolling wheels on flange climb derailment“. In: ASME 2004 International Mechanical Engineering Congress and Exposition: IMECE2004: 21-27. November 13-19, Anahaim, California, USA. ISBN: 0-74918-4712-83. DOI: https://doi.org/10.1115/IMECE2004-60293.
  • 20. Opala Michał. 2016. „Study of the derailment safety index Y/Q of the low-floor tram bogies with different types of guidance of independently rotating wheels“. Archives of Transport 38(2): 39-47. ISSN: 0866-9546. DOI: https://doi.org/10.5604/08669546.1218792.
  • 21. Shen G., J. Zhou, L. Ren. 2006. „Enhancing the resistance to derailment and side-wear for a tramway vehicle with independently rotating wheels“. Vehicle System Dynamics 44(1): 641-651. ISSN: 0042-3114. DOI: https://doi.org/10.1080/00423110600882738.
  • 22. Wilson Nicholas, Huimin Wu, Adam Klopp, Alexander Keylin. 2019. „Railway vehicle derailment and prevention“. In: Handbook of Railway Vehicle Dynamics 913. Edited by Simon Iwnicki, Maksym Spiryagin, Colin Cole, Tim McSweeney. Plce: CRC Press Boca Raton. ISBN: 978-0429-4693-98. DOI: https://doi.org/10.1201/9780429469398.
  • 23. Xu Jingmang, Jian Wang, Ping Wang, Jiayin Chen, Yuan Gao, Rong Chen, Kaize Xie. 2020. „Study on the derailment behaviour of a railway wheelset with solid axles in a railway turnout“, Vehicle System Dynamics, 58(1): 123-143. ISSN: 0042-3114. DOI: https://doi.org/10.1080/00423114.2019.1566558.
  • 24. Mikhailov Evgeny, Stanislav Semenov, Svitlana Sapronova, Viktor Tkachenko. 2020. „On the issue of wheel flange sliding along the rail“. In: 11th Transbaltica International Scientific Conference (TRANSBALTICA) - Transportation Science and Technology: 377-385. Vilnius Gediminas Technical University. May 2-3, Vilnius, Lithuania. ISBN: 978-3-030-38665-8. DOI: https://doi.org/10.1007/978-3-030-38666-5_40.
  • 25. Dukkipati Rao V. 2000. Vehicle Dynamics. Narosa Publishing House 591. ISBN: 0-8493-0976-X.
  • 26. Mikhailov Evgeny, Stanislav Semenov, Viktor Tkachenko, Svitlana Sapronova. 2018. „Reduction of kinematic resistance to movement of the railway vehicles“. MATEC Web of Conferences 235: 00033. ISSN: 2261-236X. DOI: https://doi.org/10.1051/matecconf/201823500033.
  • 27. Mikhailov Evgeny, Stanislav Semenov, Ján Dižo, Kateryna Kravchenko. 2019. „Research of possibilities of reducing the driving resistance of a railway vehicle by means of the wheel construction improvement“. In: 13th International Scientific Conference on Sustainable, Modern and Safe Transport TRANSCOM 2019: 831-838. University of Žilina. May 29-31, Nový Smokovec, Slovak Republic. ISSN: 2352-1457. DOI: https://doi.org/10.1016/j.trpro.2019.07.117.
  • 28. Lack Tomáš, Juraj Gerlici. 2017. „Integration methods for rail vehicle ride dynamics solution assessment“. In: XXIII Konference s mezinarodni ucasti: Soucasne problemy v kolejovych vozidlech/ 23rd Conference: Current Problems in Rail Vehicles 2017: 217-234. Univerzita Pardubice. September 20-22. Ceska Trebova, Czech Republic. ISBN: 978-80-7560-085-1.
  • 29. Kurčík Pavol, Juraj Gerlici, Tomáš Lack, Andrej Suchánek, Jozef Harušinec. 2019. „Innovative solution for test equipment for the experimental investigation of friction properties of brake components of brake systems“. In: 13th International Scientific Conference on Sustainable, Modern and Safe Transport TRANSCOM 2019: 759-766. University of Žilina. May 29-31, Nový Smokovec, Slovakia. ISSN: 2352-1465. DOI: https://doi.org/10.1016/j.trpro.2019.07.107.
  • 30. Lack Tomáš, Juraj Gerlici, Pavol Šťastniak. 2019. „Wheelset/rail geometric characteristics and contact forces assessment with regard to angle of attack“. MATEC Web of Conferences 254. ISSN: 2261-236X. DOI: https://doi.org/10.1051/matecconf/201925401014.
  • 31. Nadal Joseph. 1908. Locomotives a Vapeur, Collection Encyclopedie Scientifique, Biblioteque de Mecanique Appliquee et Genie. Vol. 186. Paris.
  • 32. Gerlici Juraj, Rostyslav Domin, Ganna Cherniak, Tomas Lack. 2017. „Calculated estimation of railway wheels equivalent conicity influence on critical speed of railway passenger car“. In: XXII Slovak-Polish Scientific Conference on Machine Modelling and Simlations MMS 2017. University of Zilina, Zilina, Slovak Republic. 05-08 September 2017, Sklene Teplice, Slovak Republic.
  • 33. Lack Tomas, Juraj Gerlici. 2017. „The assessment of the intergration methods for the rail vehicle ride dynamics solution“. In: XXII Slovak-Polish Scientific Conference on Machine Modelling and Simlations MMS 2017. University of Zilina, Zilina, Slovak Republic. 05-08 September 2017, Sklene Teplice, Slovak Republic.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b8256c6-932e-499a-86a2-a05ac81c3aeb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.