PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Minority carrier recombination lifetimes in n-type CdMgSe mixed crystals measured by means of the photothermal infrared radiometry

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Minority recombination lifetimes of n-type CdMgSe mixed crystals were estimated by using infrared photothermal radiometry (PTR) amplitude and phase frequency spectra. The results obtained by the PTR method indicate that the lifetimes of optically generated carriers in CdSe and CdxMg₁₋xSe crystals are about 0.1 μs. The diffusion length of minority carrier in n-type CdSe single crystal was found to be 4.42 μm and it is in a good agreement with the literature value. It was found that with the increasing thermal-to-plasma component coefficient A the carrier concentration increases as expected from PTR theory.
Twórcy
autor
  • Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolas Copernicus University, 5/7 Grudziądzka St., 87–100 Toruń, Poland
autor
  • Department of Electronics and Computer Science, Koszalin University of Technology, 2 Śniadeckich St., 75–453 Koszalin, Poland
Bibliografia
  • 1. M. Maliński and Ł. Chrobak, “Photoacoustic operation modes for the determination of the absorption spectra of SiGe mixed crystals”, Opto−Electron. Rev. 18, 19–25 (2010).
  • 2. M. Maliński and Ł. Chrobak, “The photoacoustic spectroscopic investigations of the surface damage of silicon samples”, Opto−Electron. Rev. 19, 43–47 (2011).
  • 3. M. Maliński, Ł. Chrobak, J. Zakrzewski, and K. Strzałkowski, “The photoacoustic method of determination of the quantum efficiency of luminescence in Mn2+ ions in Zn1–x–yBexMnySe crystals” Opto−Electron. Rev. 19, 44–49 (2011).
  • 4. M. Maliński, Ł. Chrobak, and A. Patryn, “Influence of plasma waves on the photoacoustic signal of silicon samples”, Int. J. Thermophys. 32, 1986–1997 (2011).
  • 5. F. Firszt, A. Wronkowska, A. Wronkowski, S. Łęgowski, A. Marasek, H. Męczyńska, M. Pawlak, W. Paszkowicz, J. Zakrzewski, and K. Strzałkowski, “Growth and optical characterization of CdBeSe and CdMgSe crystals”, Cryst. Res. Technol. 40, 386–394 ( 2005).
  • 6. M.C. Philips, M.W. Wang, J.F. Swenberg, J.O. McCaldin, and T.C. McGill, “Proposal and verification of a new visible light emitter based on wide band gap II–VI semiconductors”, Appl. Phys. Lett. 61, 1962–1965 (1992).
  • 7. K. Perzyńska, F. Firszt, S. Łęgowski, H. Męczyńska, J. Szatkowski, M. Biernacki, A. Gajlewicz, S. Tarasenko, and P. Zaleski, “Hall effect investigations of CdMgSe and ZnMgSe bulk crystals”, J. Cryst. Growth 214/215, 904–908 (2000).
  • 8. A.A. Wronkowska, A. Wronkowski, H. Arwin, F. Firszt, S. Łęgowski, H. Męczyńska, and J. Szatkowski, “Characterisation of CdMgSe solid solutions by spectroscopic ellipsometry”, Vacuum 63, 233–239 (2001).
  • 9. M. Pawlak, F. Firszt, S. Łęgowski, H.Męczyńska, J. Gibkes, and J. Pelzl, “Thermal transport properties of CdMgSe mixed crystals measured by means of the photopyroelectric method”, Int. J. Thermophys. 31, 187–198 (2010).
  • 10. S.J. Sheard, M.G. Somekh, and T. Hiller, “Non−contacting determination of carrier lifetime and surface velocity using photothermal radiometry”, Mater. Sci. Eng. B5, 101–105 (1990).
  • 11. A. Salinick, A. Mandelis, H.Ruda, and C.Jean, “Relative sensitivity of photomodulated reflectance and photothermal infrared radiometry to thermal and carrier plasma waves in semiconductors”, J. Appl. Phys. 82, 1853–1859 (1997).
  • 12. A. Salnick, C.Jean, and A. Mandelis, “Noncontacting photothermal radiometry of SiO2/Si MOS capacitor structures”, Solid State Electronics 41(4), 591–597 (1997).
  • 13. A. Mandelis, “Laser infrared photothermal radiometry of semiconductors: principles and applications to solid state electronics”, Solid State Electronics 42, 1–15 (1998).
  • 14. A. Salnick, A. Mandelis, and C. Jean, “Noncontact measurement of transport properties of long−bulk−carrier−lifetime Si wafers using photothermal radiometry”, Appl. Phys. Lett. 69, 2522–2524 (1996).
  • 15. M.E. Rodriguez, A. Mandelis, G. Pan, L. Nicolaides, J.A. Garcia, and Y. Riopel,” Computational aspects of laser radiometric multiparameter fit for carrier transport property measurements in Si wafers”, J. Electrochem. Soc. 147, 687–689 (2000).
  • 16. A. Salnick, A. Mandelis, F. Funak, C.Jean, “Monitoring of ion implantation in Si with carrier plasma waves using infrared photothermal radiometry”, Appl. Phys. Lett. 71, 1531–1533 (1997).
  • 17. A. Mandelis, A.Othonos, C.Christofides, and J.Boussey−Said, “Non−contacting measurements of photocarrier lifetimes in bulk and polycrystalline thin−film Si photoconductive devices by photothermal radiometry”, J. Appl. Phys. 80, 5332–5341 (1996).
  • 18. M.E. Rodriguez, A. Mandelis, F. Rabago, and L. Nicolaides, “Photothermal characterization of B – implanted Si (shallow) samples”, Analytical Sciences 17, 277–280 (2001).
  • 19. M. Nestoros, Y. Karmiotis, and C. Christofides, “Two layer model for photothermal radiometry applied on semiconducting thin films”, J. Appl. Phys. 82, 6220–6227 (1997).
  • 20. T. Ikari, A. Salnick and A. Mandelis, “Theoretical and experimental aspects of three−dimensional infrared photothermal radiometry of semiconductors”, J. Appl. Phys. 85, 7392–7397 (1999).
  • 21. M.D. Dramicanin, Z.D. Ristovski, P.M. Nikolic, D.G. Vasiljevic, and D.M. Todorovic, “Photoacoustic investigation of transport in semiconductors: Theoretical and experimental study of a Ge single crystal”, Phys. Rev. B51, 14226–14232 (1995).
  • 22. C. Canali, F. Nava, G. Ottaviani, and C. Paorici, “Hole and electron drift velocity in CdSe at room temperature ”, Solid State Commun. 11, 105–107 (1972).
  • 23. S. Mora, N. Romeo, and L. Tarricone, “Diffusion length measurements in CdS and CdSe Schottky barrier junctions”, Nuovo Cimento 60B, 97–105 (1980).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b7d5f87-7441-41b5-8fb9-0baadc77e614
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.