Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cigarette butts (CBs) have only recently begun to be considered environmentally harmful waste. CBs are common waste in the environment, that can cause air, soil, and water pollution and pose a threat to the living. CBs should be treated as toxic and hazardous waste due to its slow decomposition and accumulation of many toxic substances. There is a lack of research on the adaptation of CBs to the environment and what impact they have on vegetation. Therefore, the present work aimed to understand the toxicity of smoked CBs. Leachates of various concentrations were assessed with ecotoxicological tests. The effect of CBs on germination and development of plants at their early stage of growth was determined. Seeds of Sinapis alba L. and Hordeum vulgare L. were used in the CBs toxicity test. Two-way ANOVA was conducted to compare the main effects on plants. From the results, it is evident that low concentrations of toxic substances contained in CBs have a positive effect on plants; however, Hordeum vulgare L. expresses higher toxic resistance than Sinapis alba L. It has been proven that high concentrations of CBs in a water solution have negative effects on seed germination and radical growth. This research shows that varied plant species can cope with different levels of contamination by hazardous elements. CBs are an important source of contamination for the environment and the hazardous elements that are released from them when inappropriately disposed of can impair the development of plants and accumulate in them.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
226--237
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
- Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
autor
- Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
autor
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
autor
- Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
- Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
Bibliografia
- 1. Adamcová D., Zloch J., Brtnický M., Vaverková M.D. 2019. Biodegradation/Disintegration of Selected Range of Polymers: Impact on the Compost Quality. Journal of Polymers and the Environment, 27(4), 892–899. https://doi.org/10.1007/s10924-019-01393-3
- 2. Akhbarizadeh R., Dobaradaran S., Parhizgar G., Schmidt T.C., Mallaki, R. 2021. Potentially toxic elements leachates from cigarette butts into different types of water: A threat for aquatic environments and ecosystems. Environmental Research, 202, 111706. https://doi.org/10.1016/j.envres.2021.111706
- 3. Ali H., Khan E., Ilahi I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019, 6730305. https://doi.org/10.1155/2019/6730305
- 4. Ali M.B., Singh N., Shohael A.M., Hahn E.J. Paek K.Y. 2006. Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Science, 171(1), 147–154. https://doi.org/10.1016/j.plantsci.2006.03.005
- 5. Araújo M.C.B., Costa M.F. 2019. A critical review of the issue of cigarette butt pollution in coastal environments. Environmental Research, 172, 137–149. https://doi.org/10.1016/j.envres.2019.02.005
- 6. Araújo M.C.B., Costa M.F. 2021. Cigarette butts in beach litter: Snapshot of a summer holiday. Marine Pollution Bulletin, 172, 112858. https://doi.org/10.1016/J.MARPOLBUL.2021.112858
- 7. Barnes R.L. 2011. Regulating the disposal of cigarette butts as toxic hazardous waste. Tobacco Control, 20, 45–48. https://doi.org/10.1136/tc.2010.041301
- 8. Chen C., Huang D., Liu J. 2009. Functions and Toxicity of Nickel in Plants: Recent Advances and Future Prospects. CLEAN – Soil, Air, Water, 37(4–5), 304–313. https://doi.org/10.1002/clen.200800199
- 9. Chevalier Q., El Hadri H., Petitjean P., Bouhnik-Le Coz M., Reynaud S., Grassl B., Gigault J. 2018. Nano-litter from cigarette butts: Environmental implications and urgent consideration. Chemosphere, 194, 125–130. https://doi.org/10.1016/j.chemosphere.2017.11.158
- 10. d’Heni Teixeira M.B., Duarte M.A.B., Raposo Garcez L., Camargo Rubim J., Hofmann Gatti T., Suarez P.A.Z. 2017. Process development for cigarette butts recycling into cellulose pulp. Waste Management, 60, 140–150. https://doi.org/10.1016/j.wasman.2016.10.013
- 11. Drab M., Greinert A., Kostecki J., Grzechnik M. 2011. Seed germination of selected plants under the influence of heavy metals. Civil and Environmental Engineering Reports, 7, 47–57.
- 12. El Rasafi T., Bouda S., Nouri M., Haddioui A. 2020. Assessment of metals (Cu, Ni) and metalloids (As) induces stress responses in Barley (Hordeum vulgare) and wheat (Triticum aestivum. Journal of Materials and Environmental Science, 11(5), 795–807
- 13. Gall L. H., Philippe F., Domon J. M, Gillet F., Pelloux J., Rayon C. 2015. Cell Wall Metabolism in Response to Abiotic Stress. Plants, 4(1), 112–166. https://doi.org/10.3390/plants4010112
- 14. Green A.R., Putschew A., Nehls T. 2014. Littered cigarette butts as a source of nicotine in urban waters. Journal of Hydrology, 519, 3466–3474. https://doi.org/10.1016/j.jhydrol.2014.05.046
- 15. Hernandez C.G., Potts G.E. 2018. Cigarette litter leachates: a statistical study of elements in freshwater and saltwater.
- 16. Ifelebuegu A.O., Lale E.E., Mbanaso F.U., Theophilus S.C. 2018. Facile fabrication of recyclable, superhydrophobic, and oleophilic sorbent from waste cigarette filters for the sequestration of oil pollutants from an aqueous environment. Processes, 6(9), 140. https://doi.org/10.3390/pr6090140
- 17. Jaskulak M., Grobelak A., Grosser A., Vandenbulcke F. 2019. Gene expression, DNA damage and other stress markers in Sinapis alba L. exposed to heavy metals with special reference to sewage sludge application on contaminated sites. Ecotoxicology and Environmental Safety, 181, 508–517. https://doi.org/10.1016/j.ecoenv.2019.06.025
- 18. Kebede A., Kang M.S., Bekele E. 2019. Advances in mechanisms of drought tolerance in crops, with emphasis on barley. Advances in Agronomy, 156, 265–314. https://doi.org/10.1016/bs.agron.2019.01.008
- 19. Kudryasheva N., Rozhko T. 2015. Effect of lowdose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity. Journal of Environmental Radioactivity, 142, 68–77. https://doi.org/10.1016/j.jenvrad.2015.01.012
- 20. Kul R., Ekinci M., Turan M., Ors S., Yildirim E. 2020. How Abiotic Stress Conditions Affects Plant Roots. IntechOpen. https://doi.org/10.5772/intechopen.95286
- 21. Koevoets I.T., Venema J.H., Elzenga J.T.M., Testerink C. 2016. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance. Frontiers in Plant Science, 7, 1335. https://doi.org/10.3389/fpls.2016.01335
- 22. Kurmus H., Mohajerani A. 2020. The toxicity and valorization options of cigarette butts. In Waste Management, 104, 104–118. https://doi.org/10.1016/j.wasman.2020.01.011
- 23. Luo Y., Liang J., Zeng G., Chen M., Mo D., Li G., Zhang D. 2018. Seed germination test for toxicity evaluation of compost: Its roles, problems and prospects. Waste Management, 71, 109–114. https://doi.org/10.1016/j.wasman.2017.09.023
- 24. Marinello S., Lolli F., Gamberini R., Rimini B. 2020. A second life for cigarette butts? A review of recycling solutions. In Journal of Hazardous Materials, 384, 121245. https://doi.org/10.1016/j.jhazmat.2019.121245
- 25. Massimi M. 2018. Impact of seed size on seeds viability, vigor and storability of Hordeum vulgare L. Agricultural Science Digest, 38, 62–64. https://doi.org/10.18805/ag.a-293
- 26. Maxianová A., Jakimiuk A., Vaverková M.D. 2021. Food Waste – Challenges and Approaches for New Devices. Journal of Ecological Engineering, 22(3), 231–238. https://doi.org/10.12911/22998993/132430
- 27. Moerman J.W., Potts G.E. 2011. Analysis of metals leached from smoked cigarette litter. Tobacco Control, 20, 30–35. https://doi.org/10.1136/tc.2010.040196
- 28. Mohajerani A., Kadir A. A., Larobina L. 2016. A practical proposal for solving the world’s cigarette butt problem: Recycling in fired clay bricks. Waste Management, 52, 228–244. https://doi.org/10.1016/j.wasman.2016.03.012
- 29. Morales-Segura M., Porras-Amores C., Villoria-Sáez P., Caballol-Bartolomé D. 2020. Characterization of gypsum composites containing cigarette butt waste for building applications. Sustainability (Switzerland), 12(17), 7022. https://doi.org/10.3390/SU12177022
- 30. Moura J.C.M.S., Bonine C.A.V., De Oliveira Fernandes Viana J., Dornelas M.C., Mazzafera P. 2010. Abiotic and Biotic Stresses and Changes in the Lignin Content and Composition in Plants. Journal of Integrative Plant Biology, 52, 360–376. https://doi.org/10.1111/j.1744-7909.2010.00892
- 31. Murugan K., Suresh U., Panneerselvam C., Rajaganesh R., Roni M., Aziz A.T., Hwang J.S., Sathishkumar K., Rajasekar A., Kumar S., Alarfaj A.A., Higuchi A., Benelli G. 2018. Managing wastes as green resources: cigarette butt-synthesized pesticides are highly toxic to malaria vectors with little impact on predatory copepods. Environmental Science and Pollution Research, 25(11), 10456–10470. https://doi.org/10.1007/s11356-017-0074-3
- 32. Novotny T.E., Lum K., Smith E., Wang V., Barnes R. 2009. Cigarettes butts and the case for an environmental policy on hazardous cigarette waste. International Journal of Environmental Research and Public Health, 6(5), 1691–1705. https://doi.org/10.3390/ijerph6051691
- 33. Ogundare S.A., Moodley V., Van Zyl W.E. 2017. Nanocrystalline cellulose isolated from discarded cigarette filters. Carbohydrate Polymers, 175, 273–281. https://doi.org/10.1016/j.carbpol.2017.08.008
- 34. Osuala F., Abiodun O., Igwo-Ezikpe M., Kemabonta K., Otitoloju A. 2017. Relative toxicity of cigarette butts leachate and usefulness of antioxidant biomarker activity in Nile tilapia Oreochromis niloticus (Trewavas, 1983). Ethiopian Journal of. Environmental Studies and Management, 10(1), 75–88. https://doi.org/10.4314/ejesm.v10i1.8
- 35. Qamar W., Abdelgalil A.A., Aljarboa S., Alhuzani M., Altamimi M. A. 2020. Cigarette waste: Assessment of hazard to the environment and health in Riyadh city. Saudi Journal of Biological Sciences, 27(5), 1380–1383. https://doi.org/10.1016/J.SJBS.2019.12.002
- 36. Rahman M.T., Mohajerani A., Giustozzi F. 2020. Possible recycling of cigarette butts as fiber modifier in bitumen for asphalt concrete. Materials, 13(3), 1–20. https://doi.org/10.3390/ma13030734
- 37. Rascio N., Navari-Izzo F. 2011. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180(2), 169–181. https://doi.org/10.1016/j.plantsci.2010.08.016
- 38. Register K. 2000. Cigarette butts as litter-toxic as well as ugly. Underwater Nature, 25, 23–29.
- 39. Roder Green A.L., Putschew A., Nehls T. 2014. Littered cigarette butts as a source of nicotine in urban waters. Journal of Hydrology, 519, 3466–3474. https://doi.org/10.1016/j.jhydrol.2014.05.046
- 40. Tiwari S., Lata C. 2018. Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview. Frontiers in Plant Science, 9, 1–12. https://doi.org/10.3389/fpls.2018.00452
- 41. Torkashvand J., Farzadkia M., Sobhi H. R., Esrafili A. 2020. Littered cigarette butt as a well-known hazardous waste: A comprehensive systematic review. In Journal of Hazardous Materials, 383, 121242. https://doi.org/10.1016/j.jhazmat.2019.121242
- 42. Vahidhabanu S., Rameshbabu B., Babu P.S., Rahman H.A. 2014. Study of cigarette butts extract as corrosive inhibiting agent in J55 steel material. International Journal of Research in Engineering and Technology, 3(1)
- 43. Vasić P., Jakiśić T., Delić G. 2020. Impact of Pb, Ni and Cd on the germination of barley seeds, variety Jadran, Bulletin of Natural Sciences Research, 10(2), 1–6. https://doi.org/10.5937/bnsr10-23916
- 44. Vaverková M.D., Elbl J., Voběrková S., Koda E., Adamcová D., Gusiatin Z.M., Al Rahman A., Radziemska M., Mazur Z. 2020. Composting versus mechanical–biological treatment: Does it really make a difference in the final product parameters and maturity. Waste Management, 106, 173–183. https://doi.org/10.1016/j.wasman.2020.03.030
- 45. Wojciechowski A., Iwaszczuk A. 2021. Energetyczne wykorzystanie uciążliwych odpadów komunalnych jako ważny element strategii GOZ. Gospodarka o obiegu zamkniętym, 35–50. Wydawnictwo AGH. Kraków
- 46. Xiong Q., Bai Q., Li C., Lei H., Liu C., Shen Y., Uyama H. 2018. Cost-effective, highly selective and environmentally friendly superhydrophobic absorbent from cigarette filters for oil spillage clean up. Polymers, 10(10), 1101. https://doi.org/10.3390/polym10101101
- 47. Zloch J., Vaverková M.D., Adamcová D., Radziemska M., Vyhnánek T., Trojan V., Đorđević B., Brtnický M. 2018. Seasonal changes and toxic potency of landfill leachate for white mustard. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 66(1), 235–242. https://doi.org/10.11118/actaun201866010235
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b7b0185-20b5-47ad-86b0-2b836b09826b