PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diffusion and migration of nano particles and filaments suspended in oscillating flow

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Dyfuzja i migracja nano cząstek i filamentów zawieszonych w przepływie oscylacyjnym
Języki publikacji
EN
Abstrakty
EN
The subject of this work is an experimental analysis of the dynamics of nanoobjects suspended in a liquid. The research will make it possible to appreciate the role played by hydrodynamic and ionic interactions on the transport properties of Brownian solid spherical objects, as well as strongly deformable nanofilaments and macromolecules. In the first stage of the work, an analysis of the Brownian fluctuations of spherical nanoparticles suspended in electrolytes was conducted. This report presents the results of the research carried out on the influence of the medium ionic strength and the wall on the size of the apparent (hydrodynamic) diameter of these spherical nanoobjects. The second stage of the research concerns the mobility of deformable nanoobjects with a structure similar to long macromolecules. These are nanofilaments made of a hydrogel material. The original coaxial electrospinning technique was developed to produce them. This technique allows for the fabrication of core-shell fibres, with a highly elastic hydrogel filamentous core. The mechanical properties of nanofilaments are evaluated by analysing their Brownian characteristics. The aim of this analysis is to determine the value of the persistent length of the object analysed, which is correlated with its bending Young's module. After assessing their full morphological characteristics and mechanical properties, the behaviour of hydrogel nanofilaments in the flow was analysed. An experimental system was used to analyse the dynamics of filament deformation and the migration of nanofilaments in the oscillating flow, simulating intercellular and inter-tissue flows in living organisms. The basic goal of the analysis of the dynamics of nanofilaments is the possibility to use them as models of elongated biological particles, such as proteins and DNA. The analysis of their movement and deformation in the flow will support the verification of existing theoretical models, and will expand our understanding of the physical phenomena which are responsible for the folding dynamics of long biomolecules. Another very important aim of this work is to offer the possibility of using such highly deformable, biocompatible objects in biomedical applications.
PL
Przedmiotem pracy jest eksperymentalna analiza dynamiki nanoobiektów zawieszonych w cieczy. Badania pozwolą na ocenę roli oddziaływań hydrodynamicznych, chemicznych i fluktuacji brownowskich na dynamikę i parametry transportu w mikro i nanoskali dla obiektów sferycznych, silnie deformowalnych filamentów i makromolekuł. W pierwszym etapie pracy przeprowadzono analizę ruchów brownowskich sferycznych nanocząstek zawieszonych w elektrolitach. W pracy przedstawiono wyniki przeprowadzonych badań dotyczących wpływu siły jonowej medium oraz bliskości ścianki na wielkość średnicy hydrodynamicznej tychże sferycznych nanoobiektów (efektywnego oporu lepkiego). Drugi etap badań dotyczył mobilności deformowalnych nanoobiektów o strukturze analogicznej do długich makromolekuł. Są to wytworzone z materiału hydrożelowego nanofilamenty. Opracowano oryginalną metodę ich wytwarzania, wykorzystującą technikę elektroprzędzenia współosiowego. Nowością w prowadzonych badaniach jest zamknięcie hydrożelowego materiału w postaci filamentów, charakteryzujących się dodatkowo wysoką elastycznością. Po pełnej charakterystyce morfologicznej oraz właściwości mechanicznych, hydrożelowe nanofilamenty poddane zostały analizie ich zachowania w przepływie. Stworzony układ eksperymentalny, posłużył do analizy dynamiki deformacji oraz zjawiska migracji nanofilamentów w przepływie oscylacyjnym, symulującym przepływy międzykomórkowe i międzytkankowe w żywych organizmach. W pracy zbadane zostało zjawisko migracji w poprzek kanału. To zagadnienie jest istotne dla opisu transportu deformowalnych makromolekuł w kapilarach. Przeprowadzone badania dynamiki nanofilamentów stwarzają możliwość ich wykorzystania jako modeli wydłużonych cząstek biologicznych (białka, DNA), weryfikacji istniejących już modeli teoretycznych, oraz zrozumienia zjawisk fizycznych odpowiedzialnych za fałdowanie i dynamikę zginania biomolekuł. Kolejnym bardzo ważnym celem pracy jest możliwość wykorzystania takich silnie deformowalnych, biokompatybilnych obiektów w zastosowaniach biomedycznych.
Słowa kluczowe
Rocznik
Tom
Strony
1--106
Opis fizyczny
Bibliogr. 115 poz., rys., tab.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences
Bibliografia
  • 1. M. Kochańczyk, J. Jaruszewicz, T. Lipniacki. Stochastic transitions in a bistable reaction system on the membrane. Journal of The Royal Society Interface, 10(84):1-12, 2013.
  • 2. J. Jaruszewicz, P. J. Żuk, T. Lipniacki. Type of noise defines global attractors in bistable molecular regulatory systems. Journal of Theoretical Biology, 317:140-151, 2013.
  • 3. S. Tay, J. J.Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, M. W. Covert. Singlecell NF-kB dynamics reveal digital activation and analogue information processing. Nature, 466:267-271, 2010.
  • 4. R. A. Kellogg, C. Tian, T. Lipniacki, S. R. Quake, S. Tay. Digital signaling decouples activation probability and population heterogeneity. eLIFE, 4:e08931-1-26, 2015.
  • 5. W. Pabst, E. Gregorova. Characterization of particles and particle systems. ICT Prague, 2007.
  • 6. I. Lisiecki, M . Björling, L. Motte, B. Ninham, M. P. Pileni. Synthesis of copper nanosize particles in anionic reverse micelles: effect of the addition of a cationic surfactant on the size of the crystallites. Langmuir, 11(7):2385-2392, 1995.
  • 7. S. Mondini, C. Drago, A. M. Ferretti, A. Puglisi, A. Ponti. Colloidal stability of iron oxide nanocrystals coated with a PEG-based tetra-catechol surfactant. Nanotechnology, 24:105702-1-14, 2013.
  • 8. R.-Y. Dong, Y. Zhou, C. Yang, B.-Y. Cao. Experimental study on thermophoresis of colloids in aqueous surfactant solutions. J. Phys.: Condens. Matter, 2:495102-1-9, 2015.
  • 9. W. Brown, J. Zhao. Adsorption of sodium dodecyl sulfate on polystyrene latex particles using dynamic light scattering and zeta potential measurements. Macromolecules, 26(11):2711-2715, 1993.
  • 10. L. K. Koopal, E. M. Lee, M. R. Bohmer. Adsorption of cationic and anionic surfactants on charged metal-oxide surfaces. J. Colloid Interface Sci., 170:85-97, 1995.
  • 11. M. Elimelech, C. R. O'Melia. Effect of particle size on collision efficiency in the deposition of brownian particles with electrostatic energy barriers. Langmuir, 6(6):1153-1163, 1990.
  • 12. K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul, P. Biswas. Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res. Lett., 6(27):1-8, 2011.
  • 13. J. Jiang, G. Oberdörster, P. Biswas. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res., 11:77-89, 2009.
  • 14. R. Finsy. Particle sizing by quasi-elastic light scattering. Advances in Colloid and Interface Science, 52:79-143, 1994.
  • 15. M. R. Gittings, D. A. Saville. The determination of hydrodynamic size and zetapotential from electrophoretic mobility and light scattering measurements. Colloids Surf. A, 141:111-117, 1998.
  • 16. R. Xu. Shear plane and hydrodynamic diameter of microspheres in suspension. Langmuir, 14:2593-2597, 1998.
  • 17. Ch.-H. Fischer, E. Kenndler. Analysis of colloids IX. Investigation of the electrical double layer of colloidal inorganic nanometer-particles by sizeexclusion chromatography. J. Chromatogr. A, 773:179-187, 1997.
  • 18. X. Bian, C. Kim, G. E. Karniadakis. 111 years of Brownian motion. Soft Matter, 12:6331-6346, 2016.
  • 19. M. A. Charsooghi, E. A. Akhlaghi, S. Tavaddod, H. R. Khalesifard. A MATLAB program to calculate translational and rotational diffusion coefficients of a single particle. Computer Physics Communications, 182:400-408, 2011.
  • 20. A. J. Levine, T. B. Liverpool, F. C. MacKintosh. Mobility of extended bodies in viscous films and membranes. Phys. Rev. E, 69:021503-1-10, 2004.
  • 21. A. Ortega, J. Garcia de la Torre. Hydrodynamic properties of rodlike and disklike particles in dilute solution. J. Chem. Phys., 119(18):9914-9919, 2003.
  • 22. A. M. Słowicka, M. L. Ekiel-Jeżewska, K. Sadlej, E. Wajnryb. Dynamics of fibres in a wide microchannel. J. Chemical Physics, 136:044904-1-8, 2012.
  • 23. A. M. Słowicka, E. Wajnryb, M. L. Ekiel-Jeżewska. Lateral migration of flexible fibres in Poiseuille flow between two parallel planar solid walls. Eur. Phys. J. E, 36(31):1-12, 2013.
  • 24. P. Szymczak, M. Cieplak. Influence of hydrodynamic interactions on mechanical unfolding of proteins. J. Phys.: Condens. Matter, 19:285224-1-12, 2007.
  • 25. M. Bukowicki, M. L. Ekiel-Jeżewska. Different bending models predict different dynamics of sedimenting elastic trumbbells. Soft Matter, 2018 (in print).
  • 26. D. R. Steinhauser. Actin filaments and bundles in flow. PhD Thesis, Georg August University of Göttingen, Göttingen, 2008.
  • 27. R. G. Larson. The rheology of dilute solutions of flexible polymers: progress and problems. Journal of Rheology, 49(1):1-70, 2005.
  • 28. G. B. Jeffery. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Roy. Soc. A, 102:161-179, 1922.
  • 29. L. C. Nitsche, E. J. Hinch. Shear-induced lateral migration of Brownian rigid rods in parabolic channel flow. J. Fluid Mech., 332:1-21, 1997.
  • 30. C. Bustamante, J. F. Marko, E. D. Siggia, S. Smith. Entropic elasticity of λ-phage DNA. Science, 265:1599-1600, 1994.
  • 31. Y. Z. Zhang, C.T. Lim, S. Ramakrishna, Z.-M. Huang. Recent development of polymer nanofibers for biomedical and biotechnological applications. J. Mater Science Mater Med., 16(10):933-946, 2005.
  • 32. G. Verreck, I. Chun, J. Rosenblatt, J. Peeters, A. V. Dijck, J. Mensch, M. Noppe, M. E. Brewster. Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water insoluble, nonbiodegradable polymer. J. Controlled Release, 92:349-360, 2003.
  • 33. W. Cui, Y. Zhou, J. Chang. Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci. Technol. Adv. Mater., 11:014108-1-11, 2010.
  • 34. S. Pawłowska. Dynamics of nano objects suspended in liquids: experimental analysis. Ph.D. Thesis, IPPT PAN, Warsaw 2018. (http://fluid.ippt.pan.pl/papers/PhD/PhD_Pawlowska2018.pdf)
  • 35. E. S. Medeiros, G. M. Glenn, A. P. Klamczynski, W. J. Orts, L. H. C. Mattoso. Solution blow spinning: a new method to produce micro- and nanofibres from polymer solutions. Journal of Applied Polymer Science, 113:2322-2330, 2009.
  • 36. T . Grafe, K. Graham. Polymeric nanofibres and nanofibre webs: a new class of nonwovens. International Nonwovens Technical Conference, Atlanta, Georgia, 2002.
  • 37. P. Nakielski, S. Pawlowska, F. Pierini, V. Liwinska, P. Hejduk, K. Zembrzycki, E. Zabost, T. A. Kowalewski. Hydrogel nanofilaments via core-shell electrospinning. PLoS ONE, 10(6): e0129816-1-16, 2015.
  • 38. H. Qu, S. Wei, Z. Guo. Coaxial electrospun nanostructures and their applications. J. Mater. Chem. A, 1:11513-11528, 2013.
  • 39. D.-G. Yu, J. H. Yu, L. Chen, G. R. Williams, X. Wang. Modified coaxial electrospinning for the preparation of high-quality ketoprofen-loaded cellulose acetate nanofibers. Carbohydr Polym., 90:1016-1023, 2012.
  • 40. M. F. Elahi, W. Lu, G. Guoping, F. Khan. Core-shell fibres for biomedical applications - A review. J. Bioengineer and Biomedical Sci., 3(1):1-14, 2013.
  • 41. A. V. Bazilevsky, A. L. Yarin, C. M. Megaridis. Co-electrospinning of core−shell fibres using a single-nozzle technique. Langmuir, 23:2311-2314, 2007.
  • 42. Ch. Wang, L. Wang, M. Wang. Evolution of core-shell structure: from emulsions to ultrafine emulsion electrospun fibres. Materials Letters, 124:192-196, 2014.
  • 43. J. D´ıaz, A. Barrero, M. M´arquez, I. Loscertales. Controlled encapsulation of hydrophobic liquids in hydrophilic polymer nanofibres by co-electrospinning. Adv. Funct. Mater., 16:2110-2116, 2006.
  • 44. Z. Maolin, L. Jun, Y. Min, H. Hongfei. The swelling behavior of radiation prepared semi-interpenetrating polymer networks composed of polyNIPAAm and hydrophilic polymers. Radiation Physics and Chemistry, 58:397-400, 2000.
  • 45. F. Sabbagh, I. I. Muhamad. Acrylamide-based hydrogel drug delivery systems: release of acyclovir from MgO nanocomposite hydrogel. Journal of the Taiwan Institute of Chemical Engineers, 72:182-193, 2017.
  • 46. M. Kurečič, M. Sfiligoj-Smole, K. Stana-Kleinschek. UV polymerization of poly (N-isopropylacrylamide) hydrogel. Materials and Technology, 46(1):87-91, 2012.
  • 47. J. R. Tse, A. J. Engler. Current protocols in cell biology: preparation of hydrogel substrates with tunable mechanical properties. John Wiley & Sons, Inc., supplement 47:10.161-16, 2010.
  • 48. T. Kanai, D. Lee, H. C. Shum, D. A. Weitz. Fabrication of tunable spherical colloidal crystals immobilized in soft hydrogels. Small Journal, 6(7):807-810, 2010.
  • 49. Z. Wei, Z. Jia, J. Athas, C. Wang, S. R. Raghavan, T. Li, Z. Nie. Hybrid hydrogel sheets that undergo pre-programmed shape transformations. Soft Matter, 10:8157-8162, 2014.
  • 50. Y. Ono, T. Shikata. Hydration and dynamic behavior of poly(nisopropylacrylamide)s in aqueous solution:  a sharp phase transition at the lower critical solution temperature. J. Am. Chem. Soc., 128(31):10030–10031, 2006.
  • 51. J. H. Priest, S. L. Murray, R. J. Nelson, A. S. Hoffma. Reversible polymeric gels and related systems: lower critical solution temperatures of aqueous copolymers of N-isopropylacrylamide and other N-substituted acrylamides. American Chemical Society, Washington, DC, 255-264, 1987.
  • 52. K. Zembrzycki, S. Pawłowska, P. Nakielski, F. Pierini. Development of a hybrid Atomic Force Microscope and Optical Tweezers apparatus. IPPT Reports on Fundamental Technological Research, 2:1-58, 2016.
  • 53. C. Chassagne, M. Ibanez. Hydrodynamic size and electrophoretic mobility of latex nanospheres in monovalent and divalent electrolytes. Colloids and Surfaces A: Physicochem. Eng. Aspects, 440:208-216, 2014.
  • 54. Y. Sun. New interpretation for laser light scattering. arXiv:physics/0511159v1, 2005.
  • 55. J. Gross, S. Sayle, A. R. Karow, U. Bakowsky, P. Garidel. Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: influence of experimental and data evaluation parameters. European Journal of Pharmaceutics and Biopharmaceutics, 104:30-41, 2016.
  • 56. D. H. Everett. Basic principles of colloid science. The Royal Society of Chemistry, 130-134, 1988.
  • 57. www.therom.com/particletechnology
  • 58. M. L. Bleam, C. F. Anderson, M. T. J. Record. Relative binding affinities of monovalent cations for double-stranded DNA. Proc. Natl Acad. Sci. USA, 77(6):3085-3089, 1980.
  • 59. Y. Wang, I. A. Weinstock. Polyoxometalate-decorated nanoparticles. Chem. Soc. Rev., 41:7479-7496, 2012.
  • 60. K. Bohinc, V. Kralj-Iglic, A. Iglic. Thickness of electrical double layer. Effect of ion size. Electrochimica Acta, 46:3033-3040, 2001.
  • 61. A. E. Larsen, D. G. Grier. Like-charge attractions in metastable colloidal crystallites. Nature, 385:230-233, 1997.
  • 62. C. A. Murray. When like charges attract. Nature News and Views, 385:203-204, 1997.
  • 63. S. Assemi, J. Nalaskowski, W. P. Johnson. Direct force measurements between carboxylate-modified latex microspheres and glass using atomic force microscopy. Colloids and Surfaces A: Physicochem. Eng. Aspects, 286:70-77, 2006.
  • 64. F. Pierini, K. Zembrzycki, P. Nakielski, S. Pawłowska, T. A. Kowalewski. Atomic force microscopy combined with optical tweezers (AFM/OT). Meas. Sci. Technol., 27:025904-1-11, 2016.
  • 65. G. Segre, A. Silberberg. Behaviour of macroscopic rigid spheres in Poiseuille flow. Part2. Experimental results and interpretation. J. Fluid Mech., 14:136-157, 1962.
  • 66. F. J. Gauthier, H. L. Goldsmith, S. G. Mason. Flow of suspensions through tubes – X. Liquid drops as models of erythrocytes. Biorheology, 9:205-224, 1972.
  • 67. P. C. H. Chan, L. G. Leal. Motion of a deformable drop in a second order fluid. J. Fluid Mech., 92:131-170, 1979.
  • 68. W. Hiller, T. A. Kowalewski. An experimental study of the lateral migration of a droplet in a creeping flow. Exp. in Fluids, 5:43-48, 1987.
  • 69. X. Chen, Ch. Xue, L. Zhang, G. Hu., X. Jiang, J. Sun. Inertial migration of deformable droplets in a microchannel. Phys. Fluids, 26:112003-1-25, 2014
  • 70. B. P. Ho, L. G. Leal. Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech., 65(2):365-400, 1974.
  • 71. G. Segre, A. Silberberg. Radial particle displacements in Poiseuille flow of suspensions. Nature, 189:209-210, 1961.
  • 72. A. Brandt, G. Bugliarello. Concentration redistribution phenomena in the shear flow of monolayers of suspended particles. Trans. Soc. Rheo., 10(1):229-251, 1966.
  • 73. A. D. Maude, J. A. Yearn. Particle migrations in suspension flows. J. Fluid Mech., 30:601-621, 1967.
  • 74. W. S. Rasband, ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 1997-2014, 2014. Available: http://www.imagej.nih.gov/ij.
  • 75. Matlab, Mathworks, www.mathworks.com, 2014
  • 76. B. Bhaduri, A. Neild, T. W. Ng. Directional Brownian diffusion dynamics with variable magnitudes. Appl. Phys. Lett., 92(8):084105-1-3, 2008.
  • 77. E. P. Tan, C. T. Lim. Mechanical characterization of nanofibers - A review. Compos Sci Technol., 66:1102-1111, 2006.
  • 78. M. Ahearne, Y. Yang, A. J. El Haj, K. Y. Then, K.-K. Liu. Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. Journal of The Royal Society Interface, 2:455-463, 2005.
  • 79. S. Kasas, G. Longo, G. Dietler. Mechanical properties of biological specimens explored by atomic force microscopy. J. Phys. D: Appl. Phys., 46:133001-1-12, 2013.
  • 80. F. Gittes, B. Mickey, J. Nettleton, J. Howard. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. The Journal of Cell Biology, 120(4):923–934, 1993.
  • 81. A. Ott, M. Magnasco, A. Simon, A. Libchaber. Measurement of the persistence length of polymerized actin using fluorescence microscopy. Physical Review E, 48(3):R1642-R1645, 1993.
  • 82. M. Kikumoto, M. Kurachi, V. Tosa, H. Tashiro. Flexural rigidity of individual microtubules measured by a buckling force with optical traps. Biophysical Journal, 90:1687-1696, 2006.
  • 83. J. S. Graham, B. R. McCullough, H. Kang, W. A. Elam, W. Cao, E. M. De La Cruz. Multi-platform compatible software for analysis of polymer bending mechanics. PLoS ONE, 9(4):e94766-1-6, 2014.
  • 84. N. Mücke, K. Klenin, R. Kirmse, M. Bussiek, H. Herrmann, M. Hafner, J. Langowski. Filamentous biopolymers on surfaces: atomic force microscopy images compared with brownian dynamics simulation of filament deposition. PLoS ONE, 4(11):e7756-1-7, 2009.
  • 85. T. B. Liverpool. Active gels: where polymer physics meets cytoskeletal dynamics. Phil. Trans. R. Soc. A, 364:3335-3355, 2006.
  • 86. V. Kantsler, R. E. Goldstein. Fluctuations, dynamics, and the stretch-coil transition of single actin filaments in extensional flows. Phys. Rev. Lett., 108(3):038103-1-5, 2012.
  • 87. L. Li, H. Manikantan, D. Saintillan, S. E. Spagnolie. The sedimentation of flexible filaments. J. Fluid Mech., 735:705-736, 2013.
  • 88. H. M. Lopez, J.-P. Hulin, H. Auradou, M. D’Angelo. Deformation of a flexible fiber in a viscous flow past an obstacle. Phys. Fluids, 27:013102-1-12, 2015.
  • 89. B. Delmotte, E. Climent, F. Plouraboue. A general formulation of Bead Models applied to flexible fibres and active filaments at low Reynolds number. Journal of Computational Physics, 286:14-37, 2015.
  • 90. G. A. Evingür, Ö. Pekcan. Elastic properties of a swollen PAAm-NIPA copolymer with various NIPA contents. Polymer-Plastics Technology and Engineering, 53:834-839, 2014.
  • 91. O. San, A. E. Staples. An improved model for reduced-order physiological fluid flows. J. Mech. Med. Biol., 12(3):1250052-1-28, 2012.
  • 92. S. Pawłowska. Highly deformable nanofilaments in flow. Journal of Physics: Conference Series, 760:012022-1-10, 2016.
  • 93. K. Sadlej, E. Wajnryb, M. L. Ekiel-Jezewska, D. Lamparska, T. A. Kowalewski. Dynamics of nanofibres conveyed by low Reynolds number flow in a microchannel. Int. J. Heat Fluid Flow, 31:996-1004, 2010.
  • 94. K. Jo, Y. L. Chen., J. J. de Pablo, D. C. Schwartz. Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows. Lab on a Chip, 9(16):2348-2355, 2009.
  • 95. D. Steinhauser, S. Köster, T. Pfohl. Mobility gradient induces cross-streamline migration of semiflexible polymers. ACS Macro Lett., 1:541-545, 2012.
  • 96. B. Nöding, S. Köster. Intermediate filaments in small configuration spaces. Phys. Rev. Lett., 108(8):088101-1-4, 2012.
  • 97. K.S. Bloom. Beyond the code: the mechanical properties of DNA as they relate to mitosis. Chromosoma, 117(2):103-110, 2008.
  • 98. S. Pawłowska, P. Nakielski, F. Pierini, I. K. Piechocka, K. Zembrzycki, T. A. Kowalewski. Lateral migration of electrospun hydrogel nanofilaments in an oscillatory flow. PLoS ONE, 12(11): e0187815-1-21, 2017.
  • 99. S. Birner, C. Uhl, M. Bayer, P. Vogl. Theoretical model for the detection of charged proteins with a silicon-on-insulator sensor. J. Phys.: Conf. Ser., 107:012002-1-15, 2008.
  • 100. P. Jurney, R. Agarwal, V. Singh, K. Roy, S. V. Sreenivasan, L. Shi. Sizedependent nanoparticle margination and adhesion propensity in a microchannel. Journal of Nanotechnology in Engineering and Medicine, 4:031002-1-7, 2013.
  • 101. N. Quennouz, M. Shelley, O. du Roure, A. Lindner. Transport and buckling dynamics of an elastic fibre in a viscous cellular flow. J. Fluid Mech., 769:387-402, 2015.
  • 102. E. Wandersman, N. Quennouz, M. Fermigier, A. Lindner, O. du Roure. Buckled in translation. Soft Matter, 6:5715-5719, 2010.
  • 103. P. LeDuc, C. Haber, G. Bao, D. Wirtz. Dynamics of individual flexible polymers in a shear flow. Nature, 399:564-566, 1999.
  • 104. Y.J. Chen, S. Johnson, P. Mulligan, A.J. Spakowitz, R. Phillips. Modulation of DNA loop lifetimes by the free energy of loop formation. Proc. Natl. Acad. Sci., 111(49):17396-17401, 2014.
  • 105. A. Izmitli, D.C. Schwartz, M.D. Graham, J.J. de Pablo. The effect of hydrodynamic interactions on the dynamics of DNA translocation through pores. J. Chem. Phys., 128(8):085102-1-7, 2008.
  • 106. O. Kratky, G. Porod. Röntgenuntersuchung gelöster Fadenmoleküle. Rec. Trav. Chim. Pays-Bas., 68:1106-1122, 1949.
  • 107. S. Reddig, H. Stark. Cross-streamline migration of a semiflexible polymer in a pressure driven flow. J. Chem. Phys., 135:165101-1-11, 2011.
  • 108. A. Farutin, T. Piasecki, A.M. Słowicka, Ch. Misbah, E. Wajnryb, M.L. EkielJezewska. Dynamics of flexible fibers and vesicles in Poiseuille flow at low Reynolds number. Soft Matter, 12(35):7307-23, 2016.
  • 109. M. Harasim, B. Wunderlich, O. Peleg, M. Kröger, A. R. Bausch. Direct observation of the dynamics of semiflexible polymers in shear flow. Physical Review Letters, 110:108302-1-5, 2013.
  • 110. R. Chelakkot, R.G. Winkler, G. Gompper. Migration of semiflexible polymers in microcapillary flow. EPL, 91(1):14001-1-6, 2010.
  • 111. J.J. de Pablo, H.C. Ottinger, Y. Rabin. Hydrodynamic changes of the depletion layer of dilute polymer solutions near a wall. AIChE J., 38(2):273-283, 1992.
  • 112. T. Kowalczyk, A. Nowicka, D. Elbaum, T. A. Kowalewski. Electrospinning of bovine serum albumin. Optimization and the use for production of biosensors. Biomacromolecules, 9(7):2087-2090, 2008.
  • 113. P. Nakielski, T. Kowalczyk, K. Zembrzycki, T. A. Kowalewski. Experimental and numerical evaluation of drug release from nanofiber mats to brain tissue. J. Biomed. Mater. Res. B: Applied Biomaterials, 103(2):282-291, 2015.
  • 114. P. Nakielski. Systemy uwalniania leków oparte na nanowłóknach. IPPT Reports on Fundamental Technological Research, 1:1-216, 2015.
  • 115. A. Shkilnyya, P. Proulxb, J. Sharpa, M. Lepagec, P. Vermette. Diffusion of rhodamine B and bovine serum albumin in fibrin gels seeded with primary endothelial cells. Colloids and Surfaces B: Biointerfaces, 93:202-207, 2012.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b759a9f-3cd7-4354-930d-c4c846ecff5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.