PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of strength differential on material effort and lifetime of steam turbine rotors under thermo-mechanical load

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of experimental tests and numerical simulations related with the strength differential effect. Tensile and compression tests on 2CrMoV low-alloy steel are performed to evaluate the magnitude of the yield stress difference in tension and compression. The strength differential parameter is then used in the formula for equivalent stress proposed by Burzyński. The material effort calculated using Burzyński and Huber-Mises-Hencky hypotheses was compared for different start-stop cycles. Analytical notch stress-strain correction rules by Neuber and Glinka-Molski were applied to compute elastic-plastic strain amplitudes in rotor circumferential grooves. It was finally shown that the strength differential effect has significant influence on the predicted fatigue life under thermo-mechanical loading.
Rocznik
Strony
167--184
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences Energy Conversion Department Fiszera 14, 80-231 Gdańsk, Poland
  • University of Warmia and Mazury, Faculty of Technical Sciences Oczapowskiego 11, 10-719 Olsztyn, Poland
autor
  • The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences Energy Conversion Department Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • 1. Vadillo G., Fernandez-Saez J., Pęcherski R.B., Some applications of Burzynski yield condition in metal plasticity, Materials and Design, 32: 628–635, 2011.
  • 2. Frąś T., Kowalewski Z., Pęcherski R.B., Rusinek A., Applications of Burzynski failure criteria – I. Isotropic materials with asymmetry of elastic range, Engineering Transactions, 58: 1–10, 2010.
  • 3. Burzyński W., About the effort hypotheses [in German: Über die Anstrengungshypothesen], Schweiz Bauzeitung, 94(21): 259–262, 1929 (reprinted in: Burzyński W., Selected works, Vol. I, PAN–PWN, Warszawa, pp. 259–262, 1982).
  • 4. Burzyński W., Theoretical foundations of the hypotheses of material effort, Engineering Transactions, 56(3): 269–305, 2008 (the recent edition of English translation of the paper [in Polish: Teoretyczne podstawy hipotez wytężenia], Czasopismo Techniczne, 47: 1–41, 1929).
  • 5. Nowak M., Ostrowska-Maciejewska J., Pęcherski R.B., Szeptyński P., Yield criterion accounting for the third invariant of stress tensor deviatore. Part I. Proposition of the yield criterion based on the concept of influence functions, Engineering Transactions, 59(4): 273–281, 2011.
  • 6. Pęcherski R.B., Szeptyński P., Nowak M., An extension of Burzynski hypothesis of material effort accounting for the third invariant of stress tensor, Archives of Metallurgy and Materials, 56(2): 503–508, 2011.
  • 7. Mucha M., Wcisło B., Pamin J., Kowalczyk-Gajewska K., Instabilities in membrane tension: Parametric study for large strain thermoplasticity, Archives of Civil and Mechanical Engineering, 18: 1055–1067, 2018.
  • 8. Banaś K., Badur J., Influence of strength differential effect on material effort of a turbine guide vane based on a thermoelastoplastic analysis, Journal of Thermal Stresses, 40: 1368–1385, 2017.
  • 9. Frąś T., Pęcherski R.B., Applications of the Burzynski hypothesis of material effort for isotropic solids, Mechnaics and Control, 29(2): 45–50, 2010.
  • 10. Pęcherski R.B., Burzynski yield condition vis-à-vis the related studies reported in the literature, Engineering Transactions, 56(4): 383–391, 2008.
  • 11. Życzkowski M., Discontinuous bifurcation in the case of the Burzyński-Torre yield conditions, Acta Mechnica, 132: 19–35, 1999.
  • 12. Ganczarski A., Skrzypek J., Mechanics of modern materials – models, anizotropy, limit surfaces, composite materials, dissipative processes [in Polish], Cracow University of Technology, Kraków, 2013.
  • 13. Neuber H., Theory of stress concentration for shear-strained prismatical bodies with arbitrary non-linear stress-strain law, ASME Journal of Applied Mechanics, 28: 544–550, 1961.
  • 14. Molski K., Glinka G., A method of elastic-plastic stress and strain calculation at a notch root, Material Science and Engineering, 50: 93–100, 1981.
  • 15. Hoffman M., Seeger T., A generalized method for estimating multiaxial elastic-plastic notch stresses and strains – Part I and II, ASME Journal of Engineering Materials and Technology, 107: 250–260, 1985.
  • 16. Moftakhar A., Buczyński A., Glinka G., Calculation of elasto-plastic strains and stresses in notches under multiaxial loading, International Journal of Fracture, 70: 357– 373, 1995.
  • 17. Banaszkiewicz M., The low-cycle fatigue life assessment method for online monitoring of steam turbine rotors, International Journal of Fatigue, 113, 311–323, 2018.
  • 18. Kleiber M., Kowalczyk P., Introduction to non-linear thermo-mechanics of deformable bodies [in Polish: Wprowadzenie do nieliniowej termomechaniki ciał odkształcalnych], IPPT, Warsaw, 2011.
  • 19. Harkegard G., Mann T., Neuber prediction of elastic-plastic strain concentration in notched tensile specimens under large-scale yielding, Journal of Strain Analysis, 38: 79–94, 2003.
  • 20. Zeng Z., Fatemi A., Elasto-plastic stress and strain behaviour at notch roots under monotonic and cyclic loadings, Journal of Strain Analysis, 36: 287–300, 2001.
  • 21. Banaszkiewicz M., Multilevel approach to lifetime assessment of steam turbines, International Journal of Fatigue, 73: 39–47, 2015.
  • 22. Lemaitre J., Desmorat R., Engineering damage mechanics, Springer-Verlag, Berlin– Heidelberg, 2005.
  • 23. Abaqus 6.12 User’s manual, 2012.
  • 24. Banaszkiewicz M., Dudda W., Applicability of notch stress-strain correction methods to low-cycle fatigue life prediction of turbine rotors subjected to thermomechanical loads, Acta Mechanica et Automatica, 12(3): 179–185, 2018.
  • 25. Banaszkiewicz M., Numerical investigations of crack initiation in impulse steam turbine rotors subject to thermo-mechanical fatigue, Applied Thermal Engineering, 138: 761–773, 2018.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b74ee3d-8a48-40b1-82f3-564372344c70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.