PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biofilm (bio-catalyst) formation on the working electrode in a microbial fuel cell

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A microbial fuel cell (MFC) is a bioelectrochemical reactor in which microorganisms, feeding on organic matter, generate electricity. In such a reactor, microorganisms active on the anode form a biofilm, whose activity is a key factor determining the performance of the MFC. Biofilm also forms in water transfer installations, in substrate transfer installations in biogas plants, etc. However, in such cases such biofilm can be a source of microbiological infections or corrosion. In addition, such biofilm is composed of various microorganisms, not necessarily producing electrons. In the case of biofilm formed on the electrode in MFC, the most important thing is to build a thin layer of biofilm from electron-producing microorganisms. This paper discusses the theoretical part of biofilm (bio-catalyst) formation and carries out the procedure of building a biofilm on a carbon electrode. It has been shown that to obtain a biofilm capable of generating electricity, at least three start-ups are necessary before the electrode reaches the appropriate operating parameters. After obtaining a ready-to-use electrode with an active biofilm, measurements of electricity generation in the MFC were carried out. The results demonstrated the effectiveness of performing multiple startups to achieve a suitable working electrode with an active biofilm.
Rocznik
Strony
139--148
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
  • Institute of Environmental Engineering and Biotechnology University of Opole Poland, ul. Kard. B. Kominka 6a, 45-032 Opole
  • Institute of Environmental Engineering and Biotechnology University of Opole Poland, ul. Kard. B. Kominka 6a, 45-032 Opole
Bibliografia
  • 1. Batté, M., Appenzeller, B.M.R., Grandjean, D., Fass, S., Gauthier, V., Jorand, F., Mathieu, L., Boualam, M., Saby, S., Block, J.C. (2003). Biofilms in Drinking Water Distribution Systems. Reviews in Environmental Science and Biotechnology, 2, 147-168. DOI: 10.1023/B:RESB.0000040456.71537.29.
  • 2. Baudler, A., Schmidt, I., Langner, M., Greiner, A., Schröder, U. (2015). Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ. Sci., 8, 2048-2055. DOI: 10.1039/C5EE00866B.
  • 3. Chiao, M., Lam, K.B., Lin, L. (2006). Micromachined microbial and photosynthetic fuel cells. J. Micromech. Microeng., 16, 2547-2553. DOI: 10.1088/0960-1317/16/12/005.
  • 4. Chowdhury, S. (2012). Heterotrophic bacteria in drinking water distribution system: a review. Environmental Monitoring and Assessment, 184(10), 6087-137. DOI: 10.1007/s10661-011-2407-x.
  • 5. Das, D. (2017). Microbial Fuel Cell., Cham: Springer.
  • 6. Deng, Q., Li, X., Zuo, J., Ling, A., Logan, B.E. (2010). Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J. Power Sources, 195, 1130-1135. DOI: 10.1016/j.jpowsour.2009.08.092.
  • 7. Donlan, R.M. (2002). Biofilms: microbial life on sur- faces. Emerging Infectious Diseases, 8(9), 881-890. DOI: 10.3201/eid0809.020063.
  • 8. Greenman, J., Gajda, I., You, J., Mendis, B.A., Obata, O., Pasternak, G., Ieropoulos, I. (2021). Microbial Fuel Cells and Their Electrified Biofilms. Biofilm, 3, 100057. DOI: 10.1016/j.bioflm.2021.100057.
  • 9. Godain, A., Haddour, N., Fongarland, P., Vogel, T.M. (2022). Bacterial Competition for the Anode Colonization under Different External Resistances in Microbial Fuel Cells. Catalysts, 12, 176. DOI: 10.3390/catal12020176.
  • 10. Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., Beveridge, T.J., Chang, I.S., Kim, B.H., Kim, K.S., Culley, D.E., Reed, S.B., Romine, M.B., Saffarini, D.A., Hill, E.A., Shi, L., Elias, D.A., Kennedy, D.W., Pinchuk, G., Watanabe, K., Ishii, S., Logan, B.E., Nealson, K.H., Fredrickson, J.K. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA, 103, 11358-11363. DOI: 10.1073/pnas.0604517103.
  • 11. Hidalgo, D., Tommasi, T., Bocchini, S., Chiolerio, A., Chiodoni, A., Mazzarino, I., Ruggeri, B. (2016). Surface modification of commercial carbon felt used as anode for microbial fuel cells. Energy, 99, 193-201. DOI: 10.1016/j.energy.2016.01.039.
  • 12. Hutchinson, A.J., Tokash, J.C., Logan, B.E. (2011). Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells. J. Power Sources, 196, 9213-9219. DOI: 10.1016/j.jpowsour.2011.07.040.
  • 13. Ibrahim, M.N.M., Yaqoob, A.A., Ahmad, A. (2022). Microbial Fuel Cells: Emerging Trends in Electrochemical Applications. Bristol: Institute of Physics Publishing.
  • 14. Kim, B.-H., Kim, H.-J., Hyun, M.-S., Park, D.-H. (1999). Direct electrode reaction of Fe (III)-Reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol., 9, 127-131. DOI: 10.1002/(SICI)1099-1514(199905/06)20:33.0.CO;2-I.
  • 15. Lee, J., Phung, N.T., Chang, I.S., Kim, B.H.; Sung, H.C. (2003). Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol. Lett., 223, 185-191. DOI: 10.1016/S0378-1097(03)00356-2.
  • 16. Logan, B.E. (2008). Microbial Fuel Cells. Hoboken: Wiley.
  • 17. Logan, B.E., Regan, J.M. (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol., 14, 512-518. DOI: 10.1016/j.tim.2006.10.003.
  • 18. Lovley, D.R. (2008). The microbe electric: Conversion of organic matter to electricity. Curr. Opin. Biotechnol., 19, 564-571. DOI: 10.1016/j.copbio.2008.10.005.
  • 19. Malvankar, N.S., Vargas, M., Nevin, K.P., Franks, A.E., Leang, C., Kim, B.-C., Inoue, K., Mester, T., Covalla, S.F., Johnson, J.P., et al. (2011). Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol., 6, 573-579. DOI: 10.1038/nnano.2011.119.
  • 20. Mara, D., Horan, N. (ed.) (2003). Handbook of water and wastewater microbiology. London: Academic Press.
  • 21. Markowska, K., Grudniak, A.M., Wolska, K.I. (2013). Mikrobiologiczne Ogniwa Paliwowe: Podstawy technologii, jej ograniczenia i potencjalne zastosowania. Postępy Mikrobiol., 52, 29-40.
  • 22. Mitra, P., Hill, G.A. (2012). Continuous microbial fuel cell using a photoautotrophic cathode and a fermentative anode. Can. J. Chem. Eng., 90, 1006–1010. DOI: 10.1002/cjce.20605.
  • 23. Muhammad, M.H., Idris, A.L., Fan, X., Guo, Y., Yu, Y., Jin, X., Qiu, J., Guan, X., Huang, T. (2020). Beyond risk: bacterial biofilms and their regulating approaches. Frontiers in Microbiology, 11, 928. DOI: 10.3389/fmicb.2020.00928.
  • 24. Obe, T., Nannapaneni, R., Schillin, W., Zhang, L., Kiess, A. (2021). Antimicrobial tolerance, biofilm formation, and molecular characterization of Salmonella isolates from poultry processing equipment. Journal of Applied Poultry Research, 30(4): 100195. DOI: 10.1016/j.japr.2021.100195.
  • 25. Patil, S.A., Surakasi, V.P., Koul, S., Ijmulwar, S., Vivek, A., Shouche, Y.S., Kapadnis, B.P. (2009). Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresour. Technol., 100, 5132-5139. DOI: 10.1016/j.biortech.2009.05.041.
  • 26. Pinck, S., Ostormujof, L.M., Teychené, S., Erable, B. (2020). Microfluidic Microbial Bioelectrochemical Systems: An Integrated Investi-gation Platform for a More Fundamental Understanding of Electroactive Bacterial Biofilms. Microorganisms, 8, 1841. DOI: 10.3390/microorganisms8111841.
  • 27. Prasad, D., Arun, S., Murugesan, M., Padmanaban, S., Satyanarayanan, R.S., Berchmans, S., Yegnaraman, V. (2007). Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cells. Biosens. Bioelectron., 22, 2604-2610. DOI: 10.1016/j.bios.2006.10.028.
  • 28. Saratale, R.G., Saratale, G.D., Pugazhendhi, A., Zhen, G., Kumar, G., Kadier, A., Sivagurunathan, P. (2017a). Microbiome involved in microbial electrochemical systems (MESs): A review. Chemosphere, 177, 176-188. DOI: 10.1016/j.chemosphere.2017.02.143.
  • 29. Saratale, G.D., Saratale, R.G., Shahid, M.K., Zhen, G., Kumar, G., Shin, H.-S., Choi, Y.-G., Kim, S.-H. (2017b). A comprehensive overview on electro-active biofilms, role of exo-electrogens and their microbial niches in microbial fuel cells (MFCs). Chemosphere, 178, 534-547. DOI: 10.1016/j.chemosphere.2017.03.066.
  • 30. Sarma, R., Tamuly, A., Kakati, B.K. (2022). Recent developments in electricity generation by microbial fuel cell using different substrates. Mater. Today Proc., 49, 457-463. DOI: 10.1016/j.matpr.2021.02.522.
  • 31. Schaetzle, O., Barrière, F., Baronian, K. (2008). Bacteria and yeasts as catalysts in microbial fuel cells: Electron transfer from micro-organisms to electrodes for green electricity. Energy Environ. Sci., 1, 607-620. DOI: 10.1039/B810642H.
  • 32. Sun, J., Li, Y., Hu, Y., Hou, B., Xu, Q., Zhang, Y., Li, S. (2012). Enlargement of anode for enhanced simultaneous azo dye decolorization and power output in air-cathode microbial fuel cell. Biotechnol. Lett., 4, 2023-2029. DOI: 10.1007/s10529-012-1002-8.
  • 33. Turhan, E.Ü., Erginkaya, Z., Korukluoğlu, M., Konuray, G. (2020). Beneficial biofilm applications in food and agricultural industry. Health and safety aspects of food processing technologies. Springer, pp. 445-469. DOI: 10.1007/978-3-030-24903-8_15.
  • 34. Wang, X., Feng, Y.J., Lee, H. (2008). Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Sci. Technol., 57, 1117-1121. DOI: 10.2166/wst.2008.064.
  • 35. Wrighton, K.C., Thrash, J.C., Melnyk, R., Bigi, J.P., Byrne-Bailey, K.G., Remis, J.P., Schichnes, D., Auer, M., Chang, C.J., Coates, J.D. (2011). Evidence for direct electron transfer by a gram-positive bacterium isolated from a microbial fuel cell. Appl. Environ. Microbiol., 77, 7633-7639. DOI: 10.1128/AEM.05365-11.
  • 36. Włodarczyk, P.P.; Włodarczyk, B. (2018). Microbial fuel cell with Ni-Co cathode powered with yeast wastewater. Energies, 11, 3194. DOI: 10.3390/en11113194.
  • 37. Włodarczyk, B., Włodarczyk, P.P. (2023). Electricity production from yeast wastewater in membrane-less microbial fuel cell with Cu-Ag cathode. Energies, 16, 2734. DOI: 10.3390/en16062734.
  • 38. Włodarczyk, P.P., Włodarczyk, B. (2024). Study of the use of gas diffusion anode with various cathodes (Cu-Ag, Ni-Co, and Cu-B alloys) in a microbial fuel cell. Energies, 17, 1636. DOI: 10.3390/en17071636.
  • 39. Yang, S., Du, F., Liu, H. (2012). Characterization of mixed-culture biofilms established in microbial fuel cells. Biomass Bioenergy, 46, 531-537. DOI: 10.1016/j.biombioe.2012.07.007.
  • 40. Yang, Y., Kong, G., Chen, X., Lian, Y., Liu, W., Xu, M. (2017). Electricity generation by Shewanella decolorationis S12 without cytochrome c. Front. Microbiol., 8, 1115. DOI: 10.3389/fmicb.2017.01115.
  • 41. Zheng, S., Yang, F., Chen, S., Liu, L., Xiong, Q., Yu, T., Zhao, F., Schröder, U., Hou, H. (2015). Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. J. Power Sources, 284, 252-257. DOI: 10.1016/j.jpowsour.2015.03.014.
  • 42. Zhou, X., Chen, X., Li, H., Xiong, J., Li, X., Li, W. (2016). Surface oxygen-rich titanium as anode for high performance microbial fuel cell. Electrochim. Acta, 209, 582–590. DOI: 10.1016/j.electacta.2016.05.103.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b71a56e-2e3d-4f93-b8f1-abcf4bc073ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.