PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A mechanism study and an investigation of the reason for the stereoselectivity in the [4+2] cycloaddition reaction between cyclopentadiene and gem-substituted ethylene electrophiles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Molecular Electron Density Theory is applied to the [4+2] cycloaddition reaction between cyclopentadiene and gem-substituted ethylene electrophiles. Calculations are made for reactions, activation energies, and reactivity indices. The results of the experiment are perfectly consistent with activation energies, which unequivocally show that this cyclization’s are is highly stereoselective, in addition, based on ELF examination, the mechanism of these [4+2] cycloadditions occurs in two phases, The mechanisms of these reactions demonstrate that the term "pericyclic reaction" is no more relevant in the 21st century and has been replaced by the term "pseudocyclic".
Czasopismo
Rocznik
Strony
217--228
Opis fizyczny
Bibliogr. 32 poz., il. kolor., rys.
Twórcy
  • Laboratory of Biomolecular Chemistry, Natural Substances and Reactivity, URAC 16, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech, Morocco
autor
  • Molecular Modelling and Spectroscopy Research Team, Faculty of Science, Chouaïb Doukkali University, P.O. Box 20, 24000 El Jadida, Morocco
  • Molecular Modelling and Spectroscopy Research Team, Faculty of Science, Chouaïb Doukkali University, P.O. Box 20, 24000 El Jadida, Morocco
Bibliografia
  • [1] Diels, O.; Alder, K.; Synthesen in der hydroaromatischen Reihe. Liebigs Ann. Chem. 1928, 460, 98-122. DOI: 10.1002/jlac.19284600106
  • [2] Funel, J.-A.; Abele, S.; Industrial Applications of the Diels-Alder Reaction. Angew. Chem. Int. Ed. 2013, 52, 3822-3863. DOI: 10.1002/anie.201201636
  • [3] Nicolaou, K.C.; Snyder, S.A.; Montagnon, T.; Vassilikogiannakis, G.; The Diels-Alder Reaction in Total Synthesis. Angew. Chem. Int. Ed. 2002, 41, 1668-1698. DOI: 10.1002/1521-3773(20020517)41:10%3C1668::AID-ANIE1668%3E3.0.CO;2-Z
  • [4] Juhl, M.; Tanner, D.; Recent applications of intramolecular Diels-Alder reactions to natural product synthesis. Chem. Soc. Rev. 2009, 38, 2983-2992. DOI: 10.1039/B816703F
  • [5] Łapczuk-Krygier, A.; Kącka-Zych, A.; Kula, K.; Recent progress in the field of cycloaddition reactions involving conjugated nitroalkenes. Curr. Chem. Lett. 2019, 8, 13-38. DOI: 10.5267/j.ccl.2018.12.002
  • [6] Yan, G.; Borah, A.J.; Wang, L.; Recent advances in the synthesis of nitroolefin compounds. Org. Biomol. Chem. 2014, 12, 6049-6058. DOI: 10.1039/C4OB00573B
  • [7] Jasiński R.; On the Question of Stepwise [4+2] Cycloaddition Reactions and Their Stereochemical Aspects. Symmetry 2021; 13(10), 1911. DOI: 10.3390/sym13101911
  • [8] Lamri, S.; Heddam, A.; Kara, M.; Yahia, W.; Khorief Nacereddine, A.; The Role of the Catalyst on the Reactivity and Mechanism in the Diels-Alder Cycloaddition Step of the Povarov Reaction for the Synthesis of a Biological Active Quinoline Derivative: Experimental and Theoretical Investigations. Organics 2021, 2, 57-71. DOI: 10.3390/org2010006
  • [9] Kącka-Zych, A.; Understanding the uniqueness of the stepwise [4+1] cycloaddition reaction between conjugated nitroalkenes and electrophilic carbene systems with a molecular electron density theory perspective. Int. J. Quantum Chem. 2021, 121, e26440. DOI: 10.1002/qua.26440
  • [10] Lystsova, E.A.; Khramtsova, E.E.; Maslivets, A.N.; Acyl(imidoyl)ketenes: Reactive Bidentate Oxa/Aza-Dienes for Organic Synthesis. Symmetry 2021, 13, 1509. DOI: 10.3390/sym13081509
  • [11] Stepanova, E.E.; Dmitriev, M.V.; Maslivets, A.N.; Synthesis of 1,4-benzothiazinones from acylpyruvic acids or furan-2,3-diones and o-aminothiophenol. Beilstein J. Org. Chem. 2020, 16, 2322-2331. DOI: 10.3762/bjoc.16.193
  • [12] Benhamed, L.; Mekelleche, S.M.; Charif, I.E.; Benchouk, W.; Ríos-Gutiérrez, M.; Domingo, L.R.; Understanding the influence of the trifluoromethyl group on the chemo-, regio-, and stereoselectivity of [3+2]-cycloadditions of thiocarbonyl S-methanides with α,β-unsaturated ketones. A molecular electron density theory study. ChemistrySelect 2020, 5, 12791-12806. DOI: 10.1002/slct.202002923
  • [13] Kula, K.; Łapczuk-Krygier, A.; A DFT computational study on the [3+2] cycloaddition between parent thionitrone and nitroethene. Curr. Chem. Lett. 2018, 7, 27-34. DOI: 10.5267/j.ccl.2018.02.001
  • [14] Fang, Y.; Zhu, Z.-L.; Xu, P.; Wang, S.-Y.; Ji, S.-J.; Aerobic radical-cascade cycloaddition of isocyanides, selenium and imidamides: Facile access to 1,2,4-selenadiazoles under metal-free conditions. Green Chem. 2017, 19, 1613-1618. DOI: 10.1039/C6GC03521C
  • [15] Fukui, K.; Molecular Orbitals in Chemistry, Physics, and Biology. 1964 Academic Press: New York, NY, USA.
  • [16] Woodward, R.B.; Hoffmann, R.; The Conservation of Orbital Symmetry. Angew. Chem. Int. Ed. Engl. 1969, 8, 781-853. DOI: 10.1002/anie.196907811
  • [17] a) Domingo, L.R.; Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry. Molecules 2016, 21, 1319; DOI: 10.3390/molecules21101319 b) Ríos-Gutiérrez, M.; Domingo, L.R.; Unravelling the Mysteries of the [3+2] Cycloaddition Reactions. Eur. J. Org. Chem. 2019, 2019, 267-282; DOI: 10.1002/ejoc.201800916 c) Domingo, L.R.; Acharjee, N.; Molecular electron density theory: a new theoretical outlook on organic chemistry, in: Frontiers in Computational Chemistry, (Ed.: Ul-Haq, Z.; Wilson, A.K.) 2020, 174-227. Bentham and Science, Singapore. DOI 10.2174/9789811457791120050007
  • [18] Hehre, W.J.; Ab Initio Molecular Orbital Theory. Acc. Chem. Res. 1976, 9(11) 399-406. DOI: 10.1021/ar50107a003
  • [19] Fukui, K.; The Path of Chemical Reactions - The IRC Approach. Acc. Chem. Res. 1981, 14(12), 363-368. DOI: 10.1021/ar00072a001
  • [20] Tomasi, J.; Persico, M.; Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chem. Rev. 1994, 94(7), 2027-2094. DOI: 10.1021/cr00031a013
  • [21] Parr, R.G.; Szentpály, L.V.; Liu, S.; Electrophilicity index. J. Am. Chem. Soc. 1999, 121(9), 1922-1924. DOI: 10.1021/ja983494x
  • [22] Parr, R.G.; Pearson, R.G.; Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105(26), 7512-7516. DOI: 10.1021/ja00364a005
  • [23] Calais, J.-L.; Density-functional theory of atoms and molecules. R.G. Parr and W. Yang, Oxford University Press, New York, Oxford, 1989. IX + 333 pp. Price £45.00. Int J Quantum Chem. 1993, 47(1), 101. DOI: 10.1002/qua.560470107
  • [24] Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P.; Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 2016, 21(6), 748. DOI: 10.3390/molecules21060748
  • [25] Domingo, L.R.; A new C-C bond formation model based on the quantum chemical topology of electron density. RSC Adv. 2014, 4, 32415-32428. DOI: 10.1039/c4ra04280h
  • [26] Reed, A.E.; Weinstock, R.B.; Weinhold, F.; Natural population analysis. J. Chem. Phys. 1985, 83, 735-746. DOI: 10.1063/1.449486
  • [27] Lu, T.; Chen, F.; Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33(5), 580-592. DOI: 10.1002/jcc.22885
  • [28] Ríos-Gutiérrez, M.; Saz Sousa, A.; Domingo, L.R.; Electrophilicity and nucleophilicity scales at different DFT computational levels. J. Phys. Org. Chem. 2023, 36(7), e4503. DOI: 10.1002/poc.4503
  • [29] Domingo, L.R.; Aurell, M.J.; Pérez, P.; Contreras, R.; Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions. Tetrahedron 2002, 58, 4417-4423. DOI: 10.1016/S0040-4020(02)00410-6
  • [30] Domingo, L.R.; Ríos-Gutiérrez, M.; Application of Reactivity Indices in the Study of Polar Diels-Alder Reactions, in: Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, (Ed.: Liu, S.) 2022, Wiley DOI: 10.1002/9783527829941.ch24
  • [31] Becke, A.D.; Edgecombe, K.E.; A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397-5403. DOI: 10.1063/1.458517
  • [32] Silvi, B.; Savin, A.; Classification of chemical bonds based on topological analysis of electron localization functions. Nature 1994, 371, 683-686. DOI: 10.1038/371683A0
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b696869-e057-43d5-8e61-a43e13c4a422
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.