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 Abstract: The Molecular Electron Density Theory is applied to the [4+2] 

cycloaddition reaction between cyclopentadiene and gem-substituted 
ethylene electrophiles. Calculations are made for reactions, 
activation energies, and reactivity indices. The results of the 

experiment are perfectly consistent with activation energies, which 
unequivocally show that this cyclization’s are is highly 

stereoselective, in addition, based on ELF examination, the 
mechanism of these [4+2] cycloadditions occurs in two phases, The 
mechanisms of these reactions demonstrate that the term "pericyclic 

reaction" is no more relevant in the 21st century and has been 
replaced by the term "pseudocyclic". 

 Keywords: Pericyclic reaction, Pseudocyclic, MEDT, Cyclopentadiene, Gem-
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Introduction 

A reaction in which two molecules arrange to create a cyclic adduct is called a 

cycloaddition. The [4+2] cycloaddition, also commonly known as the Diels-Alder reaction, is 

among the best known and most essential reactions, and is used widely in chemistry. The 

biography of the [4+2] cycloaddition reaction began in 1928, when Otto Diels and his 

student Kurt Alder published the work in which they described the cycloaddition of 

cyclopentadiene (a) to quinone (b) (Scheme 1) [1]. 

 

Scheme 1. The historically first Diels-Alder reaction between cyclopentadiene (a) and quinone (b) 

Currently, this reaction, named after the discoverers of the Diels and Alder reaction, 

is the most general method of obtaining six-membered carbon and heterocyclic structures 

[2-4]. Today, in addition to conjugated 1,3-dienes, conjugated nitroalkenes [5-7] are tried 

quite often as hetero-analogues of dienes. The use of ethene heteroanalogues as 

components of the cycloaddition reaction includes molecular segments containing nitrogen 

[8,9], oxygen [10,11], sulphur [12,13], selenium [14]. 

In the transition state corresponding to the Diels-Alder reaction, the diene and 

dienophile approach each other in approximately parallel planes. For the majority of systems, 

experimental and theoretical studies are in agreement with a concerted mechanism [2]. It 

has been observed that in a reaction containing asymmetric dienes and dienophiles, the 

degree of bond formation progress may be different at one pair of ends than at the other. 

This is typical of an asynchronous stepwise mechanism with the formation of a zwitterionic 

intermediate [3]. 

Following the classical institution of organic chemistry, the evolution of the [4+2] 

cycloaddition reaction was usually explained on the basis of the FMO theory and the rules of 

orbital symmetry conservation [15,16]. Now, this practice based on molecular orbital analysis 
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seems rather outdated as it does not always provide consistent information [17], instead, 

today, the new MEDT theory is widely used to study cycloaddition reactions. 

In this study we want to examine the stereoselectivity of the studied reactions, as 

well as the reaction mechanism of these reactions and to show that the word "pericyclic 

reaction" is outdated in the 21st century and the new word is pseudocyclic. 

 

Scheme 2. Possible routes of the [4+2] cycloaddition reaction between cyclopentadiene and gem-

substituted ethylene electrophiles 
 

Computations methods 

The optimization of the geometry of reactants, products and transition states was 

performed by DFT computations applying the B3LYP functional [18] set plus 6-311G(d,p) 

basis [19]. Frequency calculations were used to characterize optimized stationary positions 

to make sure that none of the reactants or products had any imaginary frequencies, and that 

the transition states have just one imaginary frequency. An intrinsic reaction coordinates 

(IRC) [20] paths were plotted in both directions, with the aim of verifying the energy profiles 

linking each transition stage to its two corresponding minimum. By employing the Tomasi 

group polarizable continuum model (PCM) to re-optimize the stationary points obtained in 

the gas phase, the solvent impact of dichloromethane was implicitly taken into account [21]. 

The global electrophilicity index was calculated using the equation shown below [22]: 

 𝜔 =
𝜇2

2𝜂
 ; wherein the electronic chemical potential and chemical hardness are represented by 

μ and η, respectively, the two quantities µ and η according to the aforementioned formulas, 

they were calculated utilizing the HOMO and LUMO values [23-25]: 

𝜇 =
𝐸𝐻𝑂𝑀𝑂+𝐸𝐿𝑈𝑀𝑂

2
 and 𝜂 =

𝐸𝐿𝑈𝑀𝑂−𝐸𝐻𝑂𝑀𝑂

2
. 
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The overall nucleophilicity index N was calculated according to the following formula: 

 𝑁 = 𝐸𝐻𝑂(𝑁𝑢) − 𝐸𝐻𝑂(𝑇𝐶𝐸), with EHO(Nu) corresponds to the HOMO energy of the reagent and 

Tetracyanoethylene's HOMO energy is known as EHO (TCE) [25]. 

All reactivity indices were evaluated utilizing B3LYP/6-31G(d) level in accordance with 

Domingo's suggestions [25].  

The total of the naturally found atomic charges (q), as determined by a natural 

population analysis (NPA) [27], was used to calculate the overall GEDT [26] electron density 

transfer of the atoms belonging to each reactant (f) at the transition state 𝐺𝐸𝐷𝑇 = ∑𝑞𝑓. The 

Topmod program has been employed to undertake a topological inquiry of the ELF electronic 

localization function. The VMD program was applied to illustrate the ELF pool isosurfaces 

with an isovalue of 0.80. 

Results and discussion: 

Prediction of the reactivity of the reactants 

To determine the donor (nucleophile) or acceptor (electrophile) character of the 

reactants, we calculated the electronic chemical potential μ, the electrophilicity indices ω, 

and the nucleophilicity indices N of the reactants (Table 1). 

Table 1. Chemical hardness η, electronic chemical potential μ, global electrophilicity ω, and global 
nucleophilicity N in eV 

Reactants η µ ω N 

Cyclopentadiene (1) 5.42 -3.31 1.01 2.98 

(2) 
X=F ; R=C5H11 5.41 -4.63 1.98 1.70 

X= H ; R= C5H11 3.64 -4.35 1.82 2.08 

 

From Table 1 we deduce that:  

- The electronic chemical potential of (1) (-3.31) is greater than that of (2) for all four 

cases (-4.63; -4.35), implying that electron transfer will take place from (1) to (2). 

- The electrophilicity index of (2) (1.98; 1.82) is higher than that of (1) (1.01), so in 

this cycloaddition, 2 are a strong electrophile within the electrophilicity scale, ω = 

1.98, 1.82 eV, while Cyclopentadiene (1), is a moderate electrophile, ω = 1.01 eV. 

On the other hand, both 1 and 2 are moderate nucleophiles [28]. Dienophyl (2) will 

behave as an electrophile while Cyclopentadiene (1) will behave as a nucleophile. 
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Evaluating the energy of the cycloloaddition reaction between cyclopentadiene and 

gem-substituted ethylene electrophiles 

With the objective of determining the majority product, the different possibilities of 

transition states corresponding to the [4+2] cycloaddition Reaction between cyclopentadiene 

and gem-substituted ethylene electrophiles (Scheme 2) have been determined and 

optimized, the formation of four possibilities P1, P2, P3 and P4 have been obtained. The 

relative energies in the gas phase are assigned in table 2. 

Table 2. Energies (in a.u) and relative energies (in kcal/mol) of products and different transition states 
of the [4+2] cycloaddition reaction between cyclopentadiene and gem-substituted ethylene 
electrophiles. 

System 
In gas In toluene (T=383.15°K) 

E ΔE E ΔE 

(1) -194.15372029 ------ -194.15654018 ------ 

(2) 
X=F; R=C5H11 -487.86021003 ------ -487.86349100 ------ 
X=H; R=C5H11 -388.59921178 ------ -388.60193950 ------ 

TS-1 -582.72643378 16.6 -582.72987282 17.9 
P1 -582.77620044 -14.5 -582.77870578 -12.6 

TS-2 -582.72687097 16.1 -582.72995775 17.8 

P2 -582.77898625 -16.3 -582.78134411 -14.3 
TS-3 -681.98895445 15.4 -681.99242233 17.3 

P3 -682.04335797 -18.4 -682.04587539 -16.2 

TS-4 -681.99025400 14.7 -681.99377336 16.4 
P4 -682.04575340 -19.9 -682.04830236 -17.7 

 

The activation barriers in gas for paths 1, 2, 3, and 4 associated with the [4+2] 

cycloaddition reaction between cyclopentadiene and gem-substituted ethylene electrophiles 

are TS-1 (16.6 kcal/mol), TS-2 (16.1 kcal/mol), TS-3 (15.4 kcal/mol), and TS-4 (154.7 

kcal/mol), as indicate in Table 2. These values enable us to draw the conclusion that these 

reactions are stereoslective and the products P2 and P4 are kinetically preferred. Products 

P1, P2, P3 and P4 are exothermic respectively by: (14.5 kcal/mol), (16.3 kcal/mol), (18.4 

kcal/mol) and (19.9 kcal/mol), these values indicates that the products P2 and P4 are also 

thermodynamically preferred. 

Introducing the effect of toluene on the [4+2] cycloaddition reaction between 

cyclopentadiene and gem-substituted ethylene electrophiles increases the activation energy 

by: TS-1 (1.3 kcal/mol), TS-2 (1.7 kcal/mol), TS-3 (1.8 kcal/mol) and TS-4 (1.7 kcal/mol), 

which shows that toluene destabilises these two reactions. 

Figure 1, demonstrate the geometries of the transition states attributed to the 

chemical channels of the [4+2] cycloaddition process between cyclopentadiene and gem-

substituted ethylene electrophiles. The distances are presented in Angstroms (Å).  
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The geometric properties of the transition states shown in Figure 1, can be used to 

draw some important conclusions, including the fact that bond lengths strongly imply that 

new single bonds are generated asynchronously. 

Global electron density transfer (GEDT) values were analyzed for all optimized TS 

structures using a natural population analysis in terms of residual charge on reagent 1. The 

positive global electron density transfer (GEDT) values reported in the figure reveal that 

electron density flux occurs from the cyclopentadiene acting as a nucleophile to the dipole 

 

 

Fig. 1. The transition state geometries distinct cycloaddition paths of [4+2] cycloaddition process 
between cyclopentadiene and gem-substituted ethylene electrophiles 

 acting as an electrophile, which is in good agreement with the electron chemical potential 

values covered in the CDFT section. The fact that the results are higher implies that the DA 

reactions studied have a high degree of polarity [30]. 

ELF topological analysis of the formation of C2-C6 and C3-C5 bonds along the [4+2] 

Cycloaddition reaction between Cyclopentadiene and gem-substituted ethylene 

electrophiles 

To describe the formation of C2-C6 and C3-C5 bonds along the [4+2] cycloaddition 

reaction between cyclopentadiene and gem-substituted ethylene electrophiles, a topological 

study of the ELF [31, 32] along the IRC related to the most favorable reaction path was 

performed. The IRC structures involved in the formation of the new C2-C6 and C3-C5 single 
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bonds were chosen by performing a topological examination of the ELF for all the IRC 

structures. The complete examination of the ELF is presented in Tables 3 and 4, while the 

positions of the attractors of the ELF basins are illustrated in Figure 2 and Figure 3. Some 

appealing conclusions can be drawn from this topological study of the ELF: 

Table 3. ELF valence basin populations, distances of the forming single bonds along the in the [4+2] 
cycloaddition reaction between cyclopentadiene and FC(CH2)COC2H11 

Structure V(C1,C2) V(C2,C3) V(C3,C4) V(C5,C6) V(C4) V(C5) V(C4,C5) V(C1) V(C6) V(C1,C6) 

F1 3.96 2.26 3.25 3.50 ---- ---- ---- ---- ---- ---- 

F2 3.19 2.38 3.11 3.40 ---- ---- ---- ---- ---- ---- 

F3 3.09 2.52 3.02 3.31 ---- ---- ---- ---- ---- ---- 

F4 2.97 2.71 2.57 2.78 0.40 0.39 ---- ---- ---- ---- 

F5 2.89 2.87 2.32 2.58 ---- ---- 1.08 ---- ---- ---- 

F6 2.83 2.96 2.29 2.46 ---- ---- 1.33 ---- ---- ---- 

F7 2.54 3.07 2.19 2.33 ---- ---- 1.42 0.23 0.50 ---- 

F8 2.44 3.13 2.14 2.28 ---- ---- 1.51 0.30 0.59 ---- 

F9 2.36 3.20 2.10 2.21 ---- ---- 1.59 0.37 0.69 ---- 

F10 2.35 3.21 2.09 2.20 ---- ---- 1.60 0.38 0.71 ---- 

F11 2.31 3.23 2.08 2.18 ---- ---- 1.62 0.40 0.75 ---- 

F12 2.18 3.32 2.08 2.12 ---- ---- 1.68 ---- ---- 1.42 

F13 2.10 3.34 2.02 2.06 ---- ---- 1.72 ---- ---- 1.58 

F14 2.01 3.37 1.99 2.00 ---- ---- 1.77 ---- ---- 1.80 

 

Table 3 shows that in the three structures F1, F2 and F3, the two fragments are 

separated as if there were two distinct reactants, because the values of the pools are almost 

identical to the values of the basins of the reactants. In structure F4 we see the appearance 

of two monosynabtic pools carried by carbon atoms C4 and C5 with values respectively 

V(C4)=0.40e and V(C5)=0.39e. In this next structure F5 the two monosynabtic pools carried 

by carbon atoms C4 and C5 will unite to form the first C4-C5 bond with a population of 

1.08e, in structure F7 we see the appearance of two monosynabtic basins carried by carbon 

atoms C1 and C6 their values become in structure F11: V(C1)=0.40e and V(C6)=0.75e. In 

structure F12 the basins V(C1)=0.40e and V(C6)=0.75e will form the second bond. 
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Fig. 2. The structures F4, F5, F11 and F12 that are involved in the production of the two C-C single 

bonds of the cycloadduct and their ELF localization domains. 

Table 4. ELF valence basin populations, distances of the forming single bonds along the in the [4+2] 
cycloaddition reaction between cyclopentadiene and HC(CH2)COC2H11 

Structure V(C1,C2) V(C2,C3) V(C3,C4) V(C5,C6) V(C4) V(C5) V(C4,C5) V(C1) V(C6) V(C1,C6) 

H1 3.27 2.26 3.26 3.15 ---- ---- ---- ---- ---- ---- 

H2 3.05 2.54 3.03 3.08 ---- ---- ---- ---- ---- ---- 

H3 2.98 2.63 2.74 3.03 0.26 ---- ---- ---- ---- ---- 

H4 2.85 2.74 2.58 2.67 0.41 0.31 ---- ---- ---- ---- 

H5 2.79 2.87 2.43 2.50 ---- ---- 0.97 ---- ---- ---- 

H6 2.50 3.00 2.30 2.35 ---- ---- 1.18 ---- ---- ---- 

H7 2.40 3.09 2.22 2.23 ---- ---- 1.35 0.25 0.37 ---- 

H8 2.33 3.14 2.15 2.16 ---- ---- 1.49 0.33 0.45 ---- 

H9 2.28 3.22 2.11 2.13 ---- ---- 1.55 0.37 0.50 ---- 

H10 2.26 3.25 2.09 2.09 ---- ---- 1.60 0.41 0.57 ---- 

H11 2.18 3.28 2.07 2.06 ---- ---- 1.63 ---- ---- 1.04 

H12 2.00 2.44 1.99 1.88 ---- ---- 1.78 ---- ---- 1.68 
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Fig. 3. The structures H4, H5, H10, and H11 that are involved in the production of the two C-O 
single bonds of the cycloadduct and their ELF localization domains. 

As the values of the basins are almost comparable with the values of the reactant 

basins, Table 3 shows that in the two structures H1 and H2, the two fragments are 

separated as if there were two independent reactants. Two monosynaptic basins are 

observed in structure H4, carried by carbon atoms C4 and C5, with values of V(C4)=0.40e 

and V(C5)=0.31e. The following structure H5 will see the first C4-C5 bond with a population 

of 0.97e and the union of the two monosynaptic pools carried by carbon atoms C4 and C5. 

Two monosynaptic basins carried by carbon atoms C1 and C6 appear in structure F7; their 

values in structure F11 are V(C1)=0.25e and V(C6)=0.37e, the values of these two basins 

become in structure H10: V(C1)=0.41e and V(C6)=0.57e, these last two will form the 

second bond without structure F11 with a density 1.04e. A study of the mechanism of 

cycloaddition reactions between cyclopentadiene and XC(CH2)COC2H11 shows that these 

reactions follow a two-step mechanism in which the formation of the second bond takes 

place once the first has been formed. 

 

Conclusion  

The Diels-Alder [4+2] cycloaddition reaction between cyclopentadiene and gem-

substituted ethylene electrophiles has been analysed within the framework of the MEDT at 

the DFT level B3LYP/6-311G(d,p). Analysis of the CDFT reactivity indices leads to the 

conclusion that cyclopentadiene acts as a nucleophile and gem-substituted ethylene 

electrophiles as an electrophile. A study of the activation energies indicates that these 

reactions are stereoselective, in complete agreement with the experimental results. 
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However, a topological ELF study of the electron density assignment of the stationary points 

along the IRC predicted that this Diels-Alder [4 + 2] reaction follows a two-step mechanism 

in which the formation of the second bond takes place once the first is almost completely 

formed. 
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