PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badanie właściwości elektrokatalitycznych wielowarstwowych struktur typu Pt/Pd dla niskotemperaturowych, polimerowych ogniw paliwowych

Identyfikatory
Warianty tytułu
EN
Study of the electrocatalytic properties of multilayer structures of Pt/Pd for low-temperature, polymer fuel cells
Języki publikacji
PL
Abstrakty
PL
Struktury bimetaliczne składające się z katalizatora platynowego oraz innego metalu o właściwościach katalitycznych (np. Ru, Co, Pd, Cr, Ir, Ni) są obecnie intensywnie badane pod kątem ich zastosowania w konstrukcji ogniw paliwowych z elektrolitem polimerowym (PEMFC). Szczególną uwagę zwraca się przy tym na poprawę właściwości elektrokatalitycznych struktur bimetalicznych w porównaniu z czystą Pt, wydłużenie czasu pracy ogniwa oraz ograniczenie ilości stosowanej Pt. Układ taki, dzięki efektowi synergii, często wykazuje większą aktywność katalityczną lub ma lepsze parametry użytkowe niż czysta Pt. Na przykład dodatek Ru zmniejsza zatrucie katalizatora tlenkiem węgla (II), dzięki czemu stop Pt-Ru lepiej sprawdza się jako katalizator anodowy w ogniwach zasilanych metanolem lub wodorem zanieczyszczonym CO. W pracy są prezentowane wyniki badań bimetalicznych, wielowarstwowych struktur typu Pt/Pd osadzonych metodą laserowej ablacji laserem impulsowym (PLD) na nanoporowatej powierzchni elektrod wykonanych z tkaniny węglowej ELAT LT2500W (E-Tek). Wielowarstwowe struktury typu Pt/Pd były wytwarzane w warunkach wysokiej próżni przez naprzemienne osadzanie Pt oraz Pd laserem impulsowym typu ArF pracującym na długości fali 193 nm. Właściwości elektrokatalityczne osadzonych struktur wielowarstwowych typu Pt/Pd badano w zespole membrana-elektrody (MEA – Membrane Electrode Assembly) ogniwa paliwowego zasilanego H2 i O2 i porównywane z właściwościami warstw osadzonych z czystej Pt. Wykonane zespoły membrana-elektrody miały warstwy katalityczne o różnych proporcjach masowych Pt do Pd oraz o różnej łącznej masie metali aktywnych. Zaobserwowano silny wpływ proporcji masowej Pt do Pd na wydajność MEA oraz efektywność wykorzystania katalizatora. Największą wydajność miały MEA z warstwami o proporcji masowej Pt do Pd wynoszącej około 3,3. Charakteryzowały się one również ponad dwukrotnym wzrostem efektywności wykorzystania katalizatora bimetalicznego (zdefiniowanej jako moc uzyskiwaną z 1 mg całkowitej masy katalizatora) w porównaniu z warstwami wykonanymi z czystej Pt.
EN
Bimetallic structures consisting of the platinum catalyst and another metal with catalytic properties, such as Ru, Co, Pt, Cr, Ir, Ni, have been recently intensively investigated for applications in Polymer Electrolyte Membrane Fuel Cells (PEMFC). Of particular interest is the improvement of the electrocatalytic properties of the bimetallic structure in comparison to Pt, the extension of the operating life of the cell, and the reduction of the amount of Pt used in the cell. Thanks to the synergy effect, a bimetallic system often shows a higher catalytic action or better utility parameters than pure Pt. For instance, Ru reduces the catalyst’s poisoning by carbon (II) oxide. Thanks to this alloy Pt-Ru is an anode catalyst of choice for fuel cells fueled with methanol or CO-containing hydrogen. In this work, results of investigations of bimetallic, multilayer Pt/Pd structures deposited by the PLD technique on the surface of gas diffusion electrodes formed from the nanoporous layer covered carbon cloth ELAT LT2500W (E-Tek) are presented. The Pt/Pd structures were fabricated under high vacuum conditions by consecutive depositions of Pt and Pd layers using a ArF pulse laser at 193 nm wavelength. The electrocatalytic properties of produced Pt/Pd layers were investigated in the Membrane Electrode Assembly (MEA) of a fuel cell supplied with H2 and O2 and compared to the properties of catalytic layers formed by Pt alone. Membrane electrode assemblies were produced with layers having different proportions of Pt to Pd, and different total noble metal mass. A strong relationship between the Pt to Pd ratio and the efficiency of the investigated MEA and the catalyst utilisation was observed. The highest efficiency an MEA with a weight ratio of Pt to Pd of about 3.3 was observed. This MEA also showed a more than double catalyst utilisation (defined as a power produced from 1 mg of catalyst mass) compared to Pt alone.
Rocznik
Strony
361--366
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • Instytut Optoelektroniki, Wojskowa Akademia Techniczna
autor
  • Instytut Optoelektroniki, Wojskowa Akademia Techniczna
autor
  • Zakład Elektrochemii, Instytut Chemii Przemysłowej, Warszawa
autor
  • Zakład Elektrochemii, Instytut Chemii Przemysłowej, Warszawa
  • Université du Québec en Outaouais, Département d’informatique et d’ingénierie, Gatineau (Québec), Canada
Bibliografia
  • [1] Ramdutt D., Charles C., Hudspeth J., Ladewing B., Gengenbach T., Boswell R., Dicks A., Brault P.: Low energy plasma treatment of Nafion® membranes for PEM fuel cells. J. of Power Sources 165 (2007) 41÷48.
  • [2] Prasanna M., Cho E. A., Kim H.-J., Lim T.-H., Oh I.-H., Hong S.-A.: Effects of platinum loading on performance of proton-exchang membrane fuel cells using surface-modified Nafion® membranes. J. of Power Sources 160 (2006) 90÷96.
  • [3] Choa S. A., Chob E. A., Ohb I.-H., Kimb H.-J., Ha H. Y., Hong S.-A., Ju J. B.: Surface modified Nafion® membrane by ion beam bombardment for fuel cell applications. J. of Power Sources 155 (2006) 286÷290.
  • [4] O’Hayre R., Lee S.-J., Cha S.-W., Prinz F. B.: A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading. J. of Power Sources 109 (2002) 483.
  • [5] Cho Y.-H., Bae J. W., Cho Y.-H., Lim J. W., Ahn M., Yoon W.-S., Kwon N.-H., Jho J.Y., Sung Y.-E.: Performance enhancement of membrane electrode assemblies with plasma etched polymer electrolyte membrane in PEM fuel cell. International J. of Hydrogen Energy 35 (2010) 10452÷10456.
  • [6] Bashyam R., Zelenay P.: A class of non-precious metal composite catalysts for fuel cells. Nature 443 (2006) 63.
  • [7] Passos R. R., Paganin V. A., Ticianelli E. A.: Studies of the performance of PEM fuel cell cathodes with the catalyst layer directly applied on Nafion membranes. Electrochimica Acta 51 (2006) 5239÷5245.
  • [8] Qiu Y., Zhang H., Zhong H., Zhang F.: A novel cathode structure with double catalyst layers and low Pt loading for proton exchange membrane fuel cells. International J. of Hydrogen energy 38 (2013) 5836÷5844.
  • [9] Zhang J., Huang M., Ma H., Tian F., Pan W., Chen S.: High catalytic activity of nanostructured Pd thin films electrochemically deposited on polycrystalline Pt and Au substrates towards electro-oxidation of methanol. Electrochemistry Communications 9 (2007) 1298÷130.
  • [10] Liang Y., Zhang H., Yi B., Zhang Z., Tan Z.: Preparation and characterization of multi-walled carbon nanotubes supported PtRu catalysts for proton exchange membrane fuel cells. Carbon 43 (2005) 3144÷3152.
  • [11] Antolini E.: Graphene as a new carbon support for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental 123-124 (2012) 52÷68.
  • [12] Wan C.-H., Zhuang Q.-H.: Novel layer wise anode structure with improved CO-tolerance capability for PEM fuel cell. Electrochimica Acta 52 (2007) 4111÷4123.
  • [13] Wang J. N., Zhao Y. Z., Niu J. J.: Preparation of graphitic carbon with high surface area and its application as an electrode material for fuel cells. J. Mater. Chem. 17 (2007) 2251÷2256.
  • [14] Brouzgou A., Song S. Q., Tsiakaras P.: Low and non-platinum electro-catalysts for PEMFCs Current status, challenges and prospects. Applied Catalysis B: Environmental 127 (2012) 371÷388.
  • [15] Cho S. H., Yang H. N., Lee D. C., Park S. H., Kim W. J.: Electrochemical properties of Pt-graphene intercalated by carbon black and its application in polymer electrolyte membrane fuel cell. Journal of Power Sources 225 (2013) 200÷206.
  • [16] Natarajan S. K., Hamelin J.: High-performance anode for Polymer Electrolyte Membrane Fuel Cells by multiple-layer Pt sputter deposition. Journal of Power Sources 195 (2010) 7574÷7577.
  • [17] Lai Y.-C., Huang K.-L., Tsai C.-H., Lee W.-J, Chen Y.-L.: Sputtered Pt loadings of membrane electrode assemblies in proton exchange membrane fuel cells. Int. J. Energy Res. 36 (8) (2012) 918.
  • [18] Huang K.-L., Lai Y.-C, Tsai C.-H.: Effects of sputtering parameters on the performance of electrodes fabricated for proton exchange membrane fuel cells. J. Power Sources 156 (2006) 224.
  • [19] Chang I., Woo S., Lee M. H., Shim J. H., Piao Y., Cha S. W.: Characterization of porous Pt films deposited via sputtering. Applied Surface Science 282 (2013) 463÷466.
  • [20] Kim H.-T., You D. J., Yoon H.-K., Joo S.H., Pak C., Chang H., Song I.-S.: Cathode catalyst layer using supported Pt catalyst on ordered mesoporous carbon for direct methanol fuel cell. Journal of Power Sources 180 (2008) 724÷732.
  • [21] Wee J.-H., Lee K.-Y., Kim S.H.: Fabrication methods for low-Pt-loading electrocatalysts in proton exchange membrane fuel cell systems. Journal of Power Sources 165 (2007) 667÷677.
  • [22] Cha S. Y., Lee W. M.: Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of ultrathin platinum on the membrane surface. J. Electrochem. Soc. 146 (1999) 4055.
  • [23] Hirano S., Kim J., Srinivasan S.: High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes. Electrochim Acta 42 (1997) 1587.
  • [24] Li J., Ye F., Chen L., Wang T., Li J., Wang X.: A study on novel pulse preparation and electrocatalytic activities of PtC-Nafion electrodes for proton exchange membrane fuel cell. Journal of Power Sources 186 (2009) 320÷327.
  • [25] Schwanitz B., Schulenburg H., Horisberger M., Wokaun A., Scherer G. G.: Stability of ultra-low pt anodes for polymer electrolyte fuel cells prepared by magnetron sputtering. Electrocatal. 2 (2011) 35.
  • [26] Cavarroc M., Ennadjaoui A., Mougenot M., Brault P., Escalier R., Tessier Y., Durand J., Roualdes S., Sauvage T., Coutanceau C.: Performance of plasma sputtered fuel cell electrodes with ultra-low Pt loadings. Electrochem. Commun. 11 (2009) 859.
  • [27] Wan C.-H., Zhuang Q.-H.: Novel layer wise anode structure with improved CO-tolerance capability for PEM fuel cell. Electrochim. Acta 52 (2007) 4111.
  • [28] Pulsed laser deposition of thin films. ed. by Eason R., Wiley-Interscience a John Willey & Sons. INC., New York (2007).
  • [29] Zhanga S., Yuan X.-Z., Ng Cheng Hin J., Wang H., Friedrich K. A., Schulz M.: A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. Journal of Power Sources 194 (2009) 588÷600.
  • [30] Lee Ki-S., Kim D. M.: Sputtering and heat treatment of pure Ni metal onto a carbon nanotube on carbon paper to fabricate electrocatalysts for the oxygen reduction reaction in PEMFC. International Journal of Hydrogen Energy 37 (2012) 6272÷6276.
  • [31] Kadirgan F., Kannan A. M., Atilan T., Beyhan S., Ozenler S. S., Suzer S., Yörür A.: Carbon supported nano-sized Pt–Pd and Pt–Co electrocatalysts for proton exchange membrane fuel cells. International Journal of Hydrogen Energy 34 (2009) 9450÷9460.
  • [32] Kreider K. G., Tarlov M. J., Cline J. P.: Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides. Sensors and Actuators B 28 (1995) 167÷172.
  • [33] Yoon S. R., Hwang G. H., Cho W. I., Oh I.-H., Hong S.-A., Ha H. Y.: Modification of polymer electrolyte membranes for DMFCs using Pd films formed by sputtering. Journal of Power Sources 106 (2002) 215÷223.
  • [34] Hsieh C.-T., Lin J.-Y.: Fabrication of bimetallic Pt-M (M= Fe, Co, and Ni) nanoparticle/carbon nanotube. Journal of Power Sources 188 (2009) 347÷352.
  • [35] Wang Z.-B., Yin G.-P., Shao Y.-Y., Yang B.-Q., Shi P.-F., Feng P.-X.: Electrochemical impedance studies on carbon supported PtRuNi and PtRu anode catalysts in acid medium for direct methanol fuel cell. Journal of Power Sources 165 (2007) 9÷15.
  • [36] Chang C.-L., Chang T.-C., Ho W.-Y., Hwang J. J., Wang D.-Y.: Electrochemical performance of PEM fuel cell with Pt-u electro-catalyst layers deposited by sputtering. Surface & Coatings Technology 201 (2006) 4442÷4446.
  • [37] Caillard A., Coutanceau C., Brault P., Mathias J., Léger J.-M.: Structure of Pt/C and PtRu/C catalytic layers prepared by plasma sputtering and electric performance in direct methanol fuel cells (DMFC). Journal of Power Sources 162 (2006) 66÷73.
  • [38] Jeon M. K., Zhang Y., McGinn P. J.: A comparative study of PtCo, PtCr, and PtCoCr catalysts for oxygen electro-reduction re action. Electrochimica Acta 55 (2010) 5318÷5325.
  • [39] Mougenot M., Caillard A., Brault P., Baranton S., Coutanceau C.: High Performance plasma sputtered PdPt fuel cell electrodes with ultra low loading. International Journal of Hydrogen Energy 36 (2011) 8429÷8434.
  • [40] Yoon S. R., Hwang G. H., Cho W. I., Oh I.-H., Hong S.-A., Ha H. Y.: Modification of polymer electrolyte membranes for DMFCs. Journal of Power Sources 106 (2002) 215÷223.
  • [41] Garcia A. C., Paganin V. A., Ticianelli E. A.: CO tolerance of PdPt/C and PdPtRu/C anodes for PEMFC. Electrochimica Acta 53 (2008) 4309÷4315.
  • [42] Long N. V., Yang Y., Thi C. M., Minh N. V., Cao Y., Nogami M.: The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells. Nano Energy 2 (2013) 636÷676.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b688418-0f9a-4652-a134-a8c8ab3b39d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.