PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Palaeoenvironmental indices (calpionellids, gamma-ray spectrometry, magnetic susceptibility) in the Berriasian of the Tisza Mega-unit (Lipse-tető section, Mecsek Mts, Hungary) and the Central Western Carpathians (lower Sub-Tatric succession, Tatra Mts, Poland) – a comparison

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Calpionellid stratigraphy, magnetic susceptibility (MS) and gamma-ray spectrometry (GRS) have been investigated in the Berriasian pelagic limestones of ca. 21 m thick interval from the Lipse-tető section (Mecsek Mts, southern Hungary, Tisza Mega-unit). The section covers the lower and upper Berriasian (Calpionella and Calpionellopsis Zones respectively), however due to a thrust fault, the upper part of the Calpionella elliptica Subzone and the lower part of the Calpionellopsis simplex Subzone (lower/upper Berriasian boundary interval) were not documented. Reslults of GRS measurements reveal contrasting trends, with low detrital input (K, Th) and elevated Th/K ratio through the lower Berriasian, as well as relatively high detrital input and decreased Th/K ratio within the upper Berriasian. The differences occur also in the calpionellid frequencies and species richness: assemblages rich in Calpionella alpina dominate in the lower Berriasian, whilst more diversified yet less abundant associations characterize the upper Berriasian. Trends in palaeoenvironmental proxies correspond well with data from the Lower Sub-Tatric succession (Pośrednie-Rówienka composite section, Tatra Mts, Poland). The palaeoenvironmental change between the early and late Berriasian is most probably related to palaeoclimate (arid to humid transition), and fertility (from oligo- to mesotrophic regime). Trends documented in Th/K ratio might have been controlled by the intensity of aeolian transportation. As revealed by previous studies, the consistent record of palaeoenvironmental changes in both the Tisza Mega-unit and the Central Western Carpathians might be observed also in the middle Jurassic sediments.
Rocznik
Strony
art. no. e27
Opis fizyczny
Bibliogr. 83 poz., rys., tab., wykr.
Twórcy
  • Polish Geological Institute-National Research Institute
  • Polish Geological Institute-National Research Institute
  • Institute of Geological Sciences, Polish Academy of Sciences, Warsaw Research Centre
  • Institute of Geology of the Czech Academy of Sciences
  • Eötvös Loránd University, Pázmány Péter sétány
  • Polish Geological Institute-National Research Institute
  • EandP Laboratories, MOL Hungarian Oil and Gas Company
Bibliografia
  • 1. Abbink, O., Targarona, J., Brinkhuis, H. and Visscher, H. 2001. Late Jurassic to earliest Cretaceous palaeoclimatic evolution of the southern North Sea. Global and Planetary Change, 30, 231–256.
  • 2. Allemann, F., Catalano, R., Farès, F. and Remane, J. 1971. Standard calpionellid zonation (Upper Tithonian–Valanginian) of the western Mediterranean Province. In: Farinacci, A. (Ed.), Proceedings, II Planktonic Conference, Rome, 1970, 2, 1337–1340. Edizioni Tecnoscienza; Roma.
  • 3. Banner, J.L. and Hanson, G.N. 1990. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 11, 3123–3137.
  • 4. Basu, H., Mahendra Kumar, K., Paneerselvam, S. and Chaki, A. 2009. Study of provenance characteristics and depositional history on the basis of U, Th and K abundances in the Gulcheru Formation, Cuddapah basin in Tummalapalle-Somalollapalle areas, Cuddapah-Aanantapur districts, Andhra Pradesh. Journal of the Geological Society of India, 74, 318–328.
  • 5. Błażejowski, B., Pszczółkowski, A., Grabowski, J., Wierzbowski, H., Deconinck, J.-F., Olempska, E., Teodorski, A. and Nawrocki, J. 2023. Integrated stratigraphy and clay mineralogy of the Owadów-Brzezinki section (Lower–Upper Tithonian transition, Central Poland): implications for correlations between the Boreal and the Tethyan domains and palaeoclimate. Journal of the Geological Society, 180, DOI: 10.1144/jgs2022-073.
  • 6. Bodin, S., Fiet, N., Godet, A., Matera, V., Westermann, S., Clément, A., Janssen, N.M.M., Stille, P. and Föllmi, K.B. 2009. Early Cretaceous (late Berriasian to early Aptian) palaeoceanographic change along the northwestern Tethyan margin (Vocontian Trough, southeastern France): d 13C, d18 O and Sr-isotope belemnite and whole-rock records. Cretaceous Research, 30, 1247–1262.
  • 7. Casellato, C.E. and Erba, E. 2021. Reliability of calcareous nannofossil events in the Tithonian–early Berriasian time interval: implications for a revised high resolution zonation. Cretaceous Research, 117, 104611.
  • 8. Cramer, B.D., and Jarvis, I. 2020. Carbon isotope stratigraphy. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D. and Ogg, G.M. (Eds), Geologic Time Scale 2020, 309–344. Elsevier; Amsterdam, Oxford, Cambridge.
  • 9. Császár, G. 2002. Urgon formations in Hungary with special reference to the Eastern Alps, the Western Carpathians and the Apuseni Mountains. Geologica Hungarica Series Geologica, 25, 1–209.
  • 10. Császár, G., Szinger, B. and Piros, O. 2013. From continental platform towards rifting of the Tisza Unit in the Late Triassic to Early Cretaceous. Geologica Carpathica, 64, 279–290.
  • 11. De Wever, P., O’Dogherty, L. and Gorican, S. 2014. Monsoon as a cause of radiolarite in the Tethyan realm. Comptes Rendus Geoscience, 346, 287–297.
  • 12. Deconinck, J.F. 1993. Clay mineralogy of the Late Tithonian–Berriasian deep-sea carbonates of the Vocontian Trough (SE France): Relationships with sequence stratigraphy. Bulletin Centres de Recherches Exploration-Production Elf-Aquitaine, 17, 223–234.
  • 13. Gawlick, H.-J. and Missoni, S. 2019. Sedimentary mélange formation related to ophiolitic subduction in the Alpine–Carpathian–Dinaride Mountain Range. Gondwana Research, 74, 144–172.
  • 14. Grabowski, J. and Pszczółkowski, A. 2006. Magneto- and biostratigraphy of the Tithonian–Berriasian pelagic sediments in the Tatra Mountains (central Western Carpathians, Poland): sedimentary and rock magnetic changes at the Jurassic/Cretaceous boundary. Cretaceous Research, 27, 398–417.
  • 15. Grabowski, J., Schnyder, J., Sobień, K., Koptiková, L., Krzemiń ski, L., Pszczółkowski, A., Hejnar, J. and Schnabl, P. 2013. Magnetic susceptibility and spectra gamma logs In the Tithonian–Berriasian pelagic carbonates In the Tatra Mts (Western Carpathians, Poland): palaeoenvironmental changes at the Jurassic/Cretaceous boundary. Cretaceous Research, 43, 1–17.
  • 16. Grabowski, J. and Sobień, K. 2015. Variation in clastic input in the Berriasian of the Lower Sub-Tatric (Križna) succession in the Tatra Mountains (Central Western Carpathians, Poland): data from magnetic susceptibility and inorganic geochemistry. Annales Societatis Geologorum Poloniae, 85, 139–150.
  • 17. Grabowski, J., Haas, J., Stoykova, K., Wierzbowski, H. and Brański, P. 2017. Environmental changes around the Jurassic/Cretaceous transition: New nannofossil, chemostratigraphic and stable isotope data from the Lókút section (Transdanubian Range, Hungary). Sedimentary Geology, 360, 54–72.
  • 18. Grabowski, J., Bakhmutov, V., Kdýr, Š., Krobicki, M., Pruner, P., Rehakova, D., Schnabl, P., Stoykova, K. and Wierzbowski, H. 2019. Integrated stratigraphy and palaeoenvironmental interpretation of the Upper Kimmeridgian to Lower Berriasian pelagic sequences of the Velykyi Kamianets section (Pieniny Klippen Belt, Ukraine). Palaeogeography, Palaeoclimatology, Palaeoecology, 532, 1–29.
  • 19. Grabowski, J., Chmielewski, A., Ploch, I., Rogov, M., Smoleń, J., Wójcik-Tabol, P., Leszczyński, K. and Maj-Szeliga, K. 2021a. Palaeoclimatic changes and inter-regional correlations in the Jurassic/Cretaceous boundary interval of the Polish Basin: portable XRF and magnetic susceptibility study. Newsletters on Stratigraphy, 54, 123–158.
  • 20. Grabowski, J., Stoykova, K., Wierzbowski, H. and Wójcik-Tabol, P. 2021b. Upper Berriasian chemostratigraphy, clay minerals and calcareous nannofossils of the Barlya section (Western Balkan, Bulgaria): implications for palaeoclimate and productivity changes, and stratigraphic correlations across the Alpine Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 567, 110252.
  • 21. Grossman, E.L. and Joachimski, M.M. 2020. Oxygen isotope stratigraphy. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D. and Ogg, G.M. (Eds), Geologic Time Scale 2020, 279–308. Elsevier; Amsterdam, Oxford, Cambridge.
  • 22. Haas, J. and Péró, C. 2004. Mesozoic evolution of the Tisza Mega-unit. International Journal of Earth Sciences, 93, 297–313.
  • 23. Haas, J., Kovacs, O. and Tard-Filacz, E. 1994. Orbitally forced cyclical changes in the quantity of calcareous and siliceous microfossils in the Upper Jurassic to Lower Cretaceous pelagic basin succession, Bakony Mountains, Hungary. Sedimentology, 41, 643–653.
  • 24. Haas, J., Kovacs, S., Gawlick, H.-J., Grădinaru, E., Karamata, S., Sudar, M., Péró, C., Mello, J., Polák, M., Ogorelec, B. and Buser, S. 2011. Jurassic evolution of the tectonostratigraphic units of the Circum-Pannonian Region. Jahrbuch der geologischen Bundesanstalt, 141, 281–354.
  • 25. Haas, J., Budai, T., Csontos, L., Fodor, L., Konrád, G. and Koroknai, B. 2014. Geology of the pre-Cenozoic basement of Hungary. Explanatory notes for “Pre-Cenozoic geological map of Hungary” (1 : 500 000). Geological and Geophysical Institute of Hungary; Budapest.
  • 26. Hallam, A., Grose, J.A. and Ruffell, A.H. 1991. Palaeoclimatic significance of changes in clay mineralogy across the Jurassic–Cretaceous boundary in England and France. Palaeogeography Palaeoclimatology, Palaeoecology, 81, 173–187.
  • 27. Hardenbol, J., Thierry, J., Harley, M.B., Jacquin, Th., de Graciansky, P.-C. and Vail, P.R. 1998. Mesozoic and Cenozoic sequence Chronostraphic framework of European basins. Appendix. SEPM Special Publication, 60, 763–786.
  • 28. Hayes, C.T., Anderson, R.F., Fleisher, M.Q., Serno, S., Winckler, G. and Gersonde, R. 2013. Quantifying lithogenic inputs to the North Pacific Ocean using the long-lived thorium isotopes. Earth and Planetary Science Letters, 383, 16–25.
  • 29. Hesselbo, S.P., Deconinck, J.-F., Huggett, J.M. and Morgans-Bell, H.S. 2008. Late Jurassic palaeoclimatic change from clay mineralogy and gamma-ray spectrometry of the Kimmeridge Clay, Dorset, UK. Journal of the Geological Society, London, 166, 1123–1133.
  • 30. Jach, R., Djerić, N., Goričan, Š. and Reháková, D. 2014. Integrated stratigraphy of the Middle Upper Jurassic of the Križna Nappe, Tatra Mountains. Annales Societatis Geologorum Poloniae, 84, 1–33.
  • 31. Jach, R. and Reháková, D. 2019. Middle to Late Jurassic carbonate-biosiliceous sedimentation and palaeoenvironment in the Tethyan Fatricum domain, Križna nappe, Tatra Mts, western Carpathians. Annales Societatis Geologorum Poloniae, 89, 1–46.
  • 32. Jurewicz, E. 2005. Geodynamic evolution of the Tatra Mts. And the Pieniny Klippen Belt (Western Carpathians): problems and comments. Acta Geologica Polonica, 55, 295–338.
  • 33. Kumpan, T., Bábek, O., Kalvoda, J., Grygar, T.M. and Frýda, J. 2015. Sea-level and environmental changes around the Devonian–Carboniferous boundary in the Namur–Dinant Basin (S. Belgium, NE France): a multi-proxy stratigraphic analysis of carbonate rmap archives and its use in regional and interregional correlations. Sedimentary Geology, 311, 43–59.
  • 34. Lakova, I. 1994. Numerical criteria of precise delimitation of the calpionellid Crassicollaria and Calpionella Zones in relation to the Jurassic/Cretaceous system boundary. Geologica Balcanica, 24, 23–30.
  • 35. Lakova, I. and Petrova, S. 2013. Towards a standard Tithonian to Valanginian calpionellid zonation of the Tethyan Realm. Acta Geologica Polonica, 63, 201–222.
  • 36. Lefeld, J. 1974. Middle–Upper Jurassic and Lower Cretaceous biostratigraphy and sedimentology of the sub-tatric succession in the Tatra Mts (Western Carpathians). Acta Geologica Polonica, 24, 277–364.
  • 37. Lefeld, J., Gaździcki, A., Iwanow, A., Krajewski, K. and Wójcik, J. 1985. Jurassic and Cretaceous lithostratigraphic units of the Tatra Mountains. Studia Geologica Polonica, 84, 1–93.
  • 38. Lodowski, D.G., Pszczółkowski, A., Szives, O., Főzy, I. and Grabowski, J. 2022. Jurassic–Cretaceous transition in the Transdanubian Range (Hungary): integrated stratigraphy and paleomagnetic study of the Harskút and Lókút sections. Newsletters on Stratigraphy, 55, 99–135.
  • 39. Lodowski, D.G., Szives, O., Virág, A. and Grabowski, J. 2024. The latest Jurassic–earliest Cretaceous climate and oceanographic changes in the Western Tethys: The Transdanubian Range (Hungary) perspective. Sedimentology, 71, 1843–1872.
  • 40. Łuczyński, P. 2002. Depositional evolution of the Middle Jurassic carbonate sediments in the High-Tatric succession, Tatra Mountains, Western Carpathians, Poland. Acta Geologica Polonica, 52, 365–378.
  • 41. McGee, D., Winckler, G., Borunda, A., Serno, S., Anderson, R.F., Recasens, C., Bory, A., Gaiero, D., Jaccard, S.L., Kaplan, M., McManus, J.F., Revel, M. and Sun, Y. 2016. Tracking eolian dust with helium and thorium: impacts of grain size and provenance. Geochimica et Cosmochimica Acta, 175, 47–67.
  • 42. Michalík, J. 2007. Sedimentary rock record and microfacies indicators of the latest Triassic to mid-Cretaceous tensional development of the Zliechov Basin (Central western Carpathians). Geologica Carpathica, 58, 443–453.
  • 43. Michalík, J., Reháková, D., Halásová, E. and Lintnerová, O. 2009. A possible West Carpathian regional stratotype of the Jurassic/Cretaceous boundary (the Brodno section near Žilina). Geologica Carpathica 60, 213–232.
  • 44. Michalík, J., Grabowski, J., Lintnerová, O., Reháková, D., Kdyr, Š., Schnabl, P. 2021. Jurassic–Cretaceous boundary record in Carpathian sedimentary sequences. Cretaceous Research, 118, 104659.
  • 45. Missoni, S. and Gawlick, H.-J. 2011. Evidence for Jurassic subduction from the Northern Calcareous Alps (Berchtesgaden; Austroalpine, Germany). International Journal of Earth Sciences, 100, 1605–1631.
  • 46. Morales, C., Gardin, S., Schnyder, J., Spangenberg, J., Arnaud-Vanneau, A., Arnaud, H., Adatte, T. and Föllmi, K.B. 2013. Berriasian and Early Valanginian environmental change along a transsect from the Jura Platform to the Vocontian Basin. Sedimentology, 60, 36–63.
  • 47. Mutterlose, J., Brumsack, H., Flogel, S., Hay, W., Klein, C., Langrock, U., Lipinski, M., Ricken, W., Soding, E., Stein, R., Swientek, O. 2003. The Greenland–norwegian Seaway: a key area for understanding Late Jurassic to Early Cretaceous paleoenvironments. Paleoceanography, 18, 1010.
  • 48. Nagy, I. 1986. Investigation of Calpionellides from the Mecsek Mountains (S. Hungary). Acta Geologica Hungarica, 39, 45–64.
  • 49. Nagy, I. and Szinger, B. 2012. Márévár Limestone Formation. In: Főzy, I. (Ed). Lithostratigraphic units of Hungary. Jurassic, 187–189. Hungarian Geological Society; Budapest.
  • 50. Nemčok, J., Bezák, V., Biely, A., Gorek, A., Gross, P., Halouzka, R., Janák, M., Kahan, Š., Kotański, Z., Lefeld, J., Mello, J., Reichwalder, P., Rączkowski, W., Roniewicz, P., Ryka, W., Wieczorek, J. and Zelman, J. 1994. Geological map of the Tatra Mountains. MŽP SR, GÚDŠ; Bratislava.
  • 51. Ogg J.G. 2020. Geomagnetic Polarity Time Scale. In: Gradstein F.M., Ogg J.G., Schmitz M.D. and Ogg G.M. (Eds), Geologic Time Scale 2020, 159–192. Elsevier; Amsterdam, Oxford, Cambridge.
  • 52. Pellenard, P., Tramoy, R., Pucéat, E., Huret, E., Martinez, M., Bruneau, L. and Thierry, J. 2014. Carbon cycle and sea-water palaeotemperature evolution at the Middle–Late Jurassic transition, eastern Paris Basin (France). Marine and Petroleum Geology, 53, 30–43.
  • 53. Petrova, S., Koleva-Rekalova, E., Ivanova, D. and Lakova I. 2019. Biostratigraphy and microfacies of the pelagic carbonate formations in the Yavorets section (Tithonian–Berriasian), Western Balkan Mts, Bulgaria. Geologica Balcanica, 48, 51–73.
  • 54. Petrova, S., Andreeva, P. and Lakova I. (2023). Calpionellid biostratigraphy and microfacies across the Tithonian/Berriasian boundary interval in the Western Fore-Balkan, Bulgaria. Review of the Bulgarian Geological Society, 84, 193–196.
  • 55. Plašienka, D. 2018. Continuity and Episodicity in the Early Alpine Tectonic Evolution of the Western Carpathians: How Large-scale Processes are Expressed by the Orogenic Architecture and Rock Recod Data. Tectonics, 37, 2029–2079.
  • 56. Pop, G. 1994. Calpionellid evolutive events and their use in biostratigraphy. Romanian Journal of Stratigraphy, 76, 7–24.
  • 57. Price, G.D., Főzy, I. and Pálfy, J. 2016. Carbon cycle through the Jurassic–Cretaceous boundary: a new global δ13C stack. Palaeogeography, Palaeoclimatology, Palaeoecology, 451, 46–61.
  • 58. Pszczółkowski, A. 1996. Calpionellid stratigraphy of the Tithonian–Berriasian pelagic limestones in the Tatra Mts (Western Carpathians). Studia Geologica Polonica, 109, 103–130.
  • 59. Pszczółkowski, A. 2003. Kościeliska Marl Formation (Lower Cretaceous) in the Polish Western Tatra Mountains: lithostratigraphy and microfossil zones. Studia Geologica Polonica, 121, 7–50.
  • 60. Radwański A. and Szulczewski M. 1966. Jurassic stromatolites of the Villany Mountains (southern Hungary). Annales Universitatis Scientiarum Budapestinensis de Rolando Eotvos Nominatae, Sectio Geologica, 9, 87–107.
  • 61. Reháková, D. 2000. Calcareous dinoflagellate and calpionellid bioevents versus sea-level fluctuations recorded in the West-Carpathian (Late Jurassic/Early Cretaceous) pelagic environments. Geologica Carpathica, 51, 229–243.
  • 62. Reháková, D. and Michalík, J. 1997a. Evolution and distribution of calpionellids – the most characteristic constituent of lower Cretaceous Tethyan microplankton. Cretaceous Research, 18, 493–504.
  • 63. Reháková, D. and Michalík, J. 1997b. Calpionellid associations versus Late Jurassic and Early Cretaceous sea-level fluctuations. Mineralia Slovaca, 29, 306–307.
  • 64. Remane, J., Borza, K., Nagy, I., Bakalova-Ivanova, D., Knauer, J., Pop, G. and Tardi-Filacz, E. 1986. Agreement on the subdivision of the standard calpionellid zones defined at the 2nd Planktonic Conference, Roma 1970. Acta Geologica Hungarica, 29, 5–14.
  • 65. Rider, M.H. 1999. The Geological Interpretation of Well Logs, 288 pp. Whittles Publishing Services; Southerland, Scotland.
  • 66. Ruffell, A. and Worden, R. 2000. Palaeoclimate analysis using spectral gamma-ray data from the Aptian (Cretaceous) of southern England and southern France. Palaeogeography, Palaeoclimatology, Palaeoecology, 155, 265–283.
  • 67. Schmid, S.M., Bernoulli, D., Fuhenschuh, D., Matenco, L., Schefer, S., Schuster, R., Tischler, M. and Ustaszewski, K. 2008. The Alpine–Carpathian–Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183.
  • 68. Schneider, A.C., Heimhofer, U., Heunisch, C. and Mutterlose, J. 2018. From arid to humid – the Jurassic–Cretaceous boundary interval in northern Germany. Review of Palaeobotany and Palynology, 255, 57–69.
  • 69. Schnyder, J., Ruffell, A., Deconinck, J.-F. and Baudin, F. 2006. Conjunctive use of spectral gamma-ray logs and clay mineralogy indefining late Jurassic–early Cretaceous palaeoclimate change (Dorset, U.K.). Palaeogeography, Palaeoclimatology, Palaeoecology, 229, 303–320.
  • 70. Sladen, C.P. 1983. Trends in early Cretaceous clay mineralogy in NW Europe. Zitteliana, 10, 349–357.
  • 71. Sladen, C.P. and Batten, D.J. 1984. Source area environments of Late Jurassic and Early Cretaceous sediments in southeast England. Proceedings of the Geologists’ Association, 95, 149–163.
  • 72. Stampfli, G.M. and Hochard, C. 2009. Plate tectonics of the Alpine realm. In: Murphy, J.B., Keppie, J.D. and Hynes, A.J. (Eds), Ancient Orogens and Modern Analogues. Geological Society London, Special Publications, 327, 89–111.
  • 73. Suk, D., Peacor, D.R. and Van der Voo, R. 1990. Replacement of pyrite framboids by magnetite in limestone and implications for paleomagnetism. Nature, 345, 611–613.
  • 74. Szederkényi T., Haas J., Nagymarosy A. and Hámor G. 2012. Geology and History of Evolution of the Tisza Mega-Unit. In: Haas, J. (Ed.), Geology of Hungary, 103–148. Springer; Springer Berlin, Heidelberg.
  • 75. Szinger, B. 2008. Early Cretaceous foraminifera from atoll environment (Márévár Valley, Mecsek Mountains, Hungary). Hantkeniana, 6, 127–143.
  • 76. Szinger, B. and Császár, G. 2010. Palaeontological and sedimentological investigation of the Upper Jurassic–Lower Cretaceous Márévár Limestone Formation (Eastern Mecsek). In: Dulai, A. and Bosnakoff, M. (Eds), 13 th Hungarian Palaeontological Conference, Csákvár, 3–5/06/2010. Programs, abstracts, field guide, 27–28. Hungarian Geological Society; Budapest.
  • 77. Szulczewski, M. 1963. Stromatolites from the High-Tatric Bathonian of the Tatra Mountains. Acta Geologica Polonica, 13, 125–148.
  • 78. Szulczewski, M. 1968. Stromatolity jurajskie w Polsce. Acta Geologica Polonica, 18, 1–121.
  • 79. Tresch, J. and Strasser, A. 2010. History of the Middle Berriasian transgression on the Jura carbonate platform: revealed by high-resolution sequence- and cyclostratigraphy (Switzerland and France). International Journal of Earth Sciences, 99, 139–163.
  • 80. Tremolada, F., Bornemann, A., Bralower, T.J., Koeberl, C. and van de Schootbrugge, B. 2006. Paleoceanographic changes across the Jurassic/Cretaceous boundary: the calcareous phytoplankton response. Earth and Planetary Science Letters, 241, 361–371.
  • 81. Vašíček, Z., Michalík, J. and Reháková, D. 1994. Early Cretaceous stratigraphy, paleogeography and life in Western Carpathians. Beringeria, 10, 3–16.
  • 82. Vörös, A. 2012. Episodic sedimentation on a peri-Tethyan ridge through the Middle–Late Jurassic transition (Villany Mounatins, southern Hungray). Facies, 58, 415–443.
  • 83. Weissert, H. and Channell, J.E.T. 1989. Tethyan carbonate carbon isotope stratigraphy across the Jurassic–Cretaceous boundary: an indicator of decelerated global carbon cycling? Paleoceanography, 4, 483–494.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b60b184-3801-490f-84c3-e3ae3d0432c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.