PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Assessment of the diagnostic value of the method of computer olfactometry

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena wartości diagnostycznej metody olfaktometrii komputerowej
Języki publikacji
EN
Abstrakty
EN
Olfactory studies can be a criterion for evaluating rhinosurgical intervention, and olfactory impairment may indicate respiratory impairment. Therefore, the urgent task is to develop an integrated approach to determining respiratory and olfactory disorders. A structural scheme was developed for the method of objective diagnosis of respiratory and olfactory disorders, taking into account the measu, rement of both the aerodynamic parameters of nasal breathing and the calculation of energy characteristics, which are used to determine olfactory sensitivity. The diagnostic significance of the proposed method of analyzing rhinofolipometry data with regard to additional parameters was assessed - it is necessary to take into account the time and power of breathing when the threshold of sensation of the odorivector is at the transition point of the airflow mode to the turbulent quadratic. It has been established that it is advisable to use the energy criteria of nasal breathing, pneumatic power and energy of nasal breathing under the action of the corresponding odor vector for the assessment of respiratory impaired olfactory. To assess the respiratory impairment of olfactory, it is necessary to use the method in which an odor vector is installed in the air path of the rhinomanometer, and the patient is asked to perform breathing maneuvers with a consistent increase in respiration rate while fixing the time at which olfactory sensitivity is achieved and then determining the respiratory energy characteristics. A statistical processing of diagnostic results was carried out, which confirms the adequacy of the model of independent statistical verification and makes it possible to use this method for the functional diagnosis of respiratory-olfactory disorders and testing of respiratory-olfactory sensitivity. The probability index of the error of the second kind is 0.17.
PL
Badania węchowe mogą być kryterium oceny interwencji chirurgicznej nosa, a zaburzenia węchu mogą wskazywać na zaburzenia oddychania. Dlatego też pilnym zadaniem jest opracowanie zintegrowanego podejścia do określania zaburzeń oddechowych i węchowych. Opracowano schemat strukturalny dla metody obiektywnej diagnostyki zaburzeń oddechowych i węchowych, uwzględniający zarówno pomiar parametrów aerodynamicznych oddychania nosowego, jak i obliczenie charakterystyki energetycznej, które są wykorzystywane do określenia wrażliwości węchowej. Oceniono znaczenie diagnostyczne proponowanej metody analizy danych rhinofolipometrycznych w odniesieniu do dodatkowych parametrów – konieczne jest uwzględnienie czasu i mocy oddychania, gdy próg czucia zapachu znajduje się w punkcie przejściowym przepływu powietrza do trybu turbulentnego. Ustalono, że wskazane jest stosowanie kryteriów energetycznych oddychania nosowego, siły pneumatycznej i energii oddychania nosowego pod wpływem odpowiedniego wektora zapachu do oceny zaburzeń oddechowych. W celu oceny zaburzeń oddychania węchu konieczne jest zastosowanie metody, w której wektor zapachu jest zainstalowany w przewodzie powietrznym rhinomanometru, a pacjent jest proszony o wykonywanie czynności oddechowych ze stałym zwiększeniem częstości oddychania przy jednoczesnym ustaleniu czasu, w którym osiągana jest wrażliwość węchowa, a następnie o kreślenie charakterystyki energetycznej oddechu. Przeprowadzono statystyczną obróbkę wyników diagnostycznych, która potwierdza adekwatność modelu niezależnej weryfikacji statystycznej i umożliwia wykorzystanie tej metody do diagnostyki funkcjonalnej zaburzeń oddechowo-zapachowych i badania wrażliwości oddechowo-zapachowej. Wskaźnik prawdopodobieństwa błędu drugiego rodzaju wynosi 0,17.
Rocznik
Strony
18--21
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
autor
  • Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
  • Vinnytsia national Technical University, Vinnytsia, Ukraine
  • Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
  • Kharkiv National Medical University, Kharkiv, Ukraine
Bibliografia
  • [1] Asakura K., Hayashi S.: Improvement of acquisition and analysis methods in multi-electrode array experiments with iPS cell-derived cardiomyocytes. Journal of Pharmacological and Toxicological Methods 75/2015, 17–26.
  • [2] Berul C.I., Aronovitz M.J., Wang P.J., Mendelsohn M.E.: In vivo cardiac electrophysiology studies in the mouse. Circulation 94/1996, 2641–2648.
  • [3] Chechel V., Vlasenko O., Rokunets I.: Patent No. 55671 UA, MPK А61В 5/04. Multichannel system for wireless transfer of action potentials in brain and spinal cord. National Pirogov Memorial Medical University 24/2010, 05836.
  • [4] Ciaccio E.J., Saltman A.E., Hernandez O.M., Bornholdt R.J., Coromilas J.: Multichannel data acquisition system for mapping the electrical activity of the heart. Pacing and clinical electrophysiology 28/2005, 826–838.
  • [5] Deacon M., Singleton D., Szalkai N., Pasieczny R., Peacock C., Price D., Boyd J., Boyd H., Steidl-Nichols J.V., Williams C.: Early evaluation of compound QT prolongation effects: a predictive 384-well fluorescence polarization binding assay for measuring hERG blockade. Journal of pharmacological and toxicological methods 55/2007, 255–264.
  • [6] Dutta S., Chang K.C., Beattie K.A, Sheng J., Tran P.N., Wu W.W., Wu M., Strauss D.G, Colatsky T., Li Z.: Optimization of an in silico cardiac cell model for proarrhythmia risk assessment. Frontiers in Physiology 23/2017, 616.
  • [7] Food and Drug Administration, HHS. ICH: S7B nonclinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals. Fed. Regist. 70/2005, 61133-4.
  • [8] Gintant G., Sager P.T., Stockbridge N.: Evolution of strategies to improve preclinical cardiac safety testing. Nature Reviews Drug Discovery 15/2016, 457–471.
  • [9] Guth B.D.: Preclinical cardiovascular risk assessment in modern drug development. Toxicological Sciences 97/2007, 4–20.
  • [10] Henry P.D.: Comparative pharmacology of calcium antagonists: nifedipine, verapamil and diltiazem. The American journal of cardiology 46/1980, 1047–1058.
  • [11] Hofer E., Keplinger F., Thurner T., Wiener T., Sanchez-Quintana D., Climent V., Plank G.: A new floating sensor array to detect electric near fields of beating heart preparations. Biosensors and Bioelectronics 21/2006, 2232–2239.
  • [12] Kawakami K., Nagatomo T., Abe H., Kikuchi K., Takemasa H., Anson B.D., Delisle B.P., January C.T., Nakashima Y.: Comparison of HERG channel blocking effects of various β blockers–implication for clinical strategy. British journal of pharmacology 147/2006, 642–652.
  • [13] Lee W., Windley M.J., Vandenberg J.I., Hill A.P.: In Vitro and in Silico Risk Assessment in Acquired Long QT Syndrome: The Devil Is in the Details. Frontiers in physiology 8/2017.
  • [14] Malkin R.A., Pendley B.D.: Construction of a very high-density extracellular electrode array,” American Journal of Physiology-Heart and Circulatory Physiology 279/2000, 437–442.
  • [15] Meyer T., Boven K.H., Günther E., Fejtl M.: Micro-electrode arrays in cardiac safety pharmacology. Drug Safety 27/2004, 763–772.
  • [16] Moroz V.M., Vlasenko O.V., Rokunets I.L., Chechel V.V., Yoltukhovskii M.V., Yankovskaya L.V.: Coupled Spike Activity in Micropopulations of Motor Cortex Neurons in Rats. Neurophysiology 42/2010, 110–117.
  • [17] Okada J.I., Yoshinaga T., Kurokawa J., Washio T., Furukawa T., Sawada K., Sugiura S., Hisada T.: Screening system for drug-induced arrhythmogenic risk combining a patch clamp and heart simulator. Science advances 4/2015, 140–142.
  • [18] Pavlov S.V., Barylo A.S., Kozlovska T.I., et al.: Analysis of microcirculatory disorders in inflammatory processes in the maxillofacial region on based of optoelectronic methods. Przegląd Elektrotechniczny 93(5)/2017, 114–117.
  • [19] Pavlov S.V., Kozhemiako V.P., Kolesnik P.F., et al.: Physical principles of biomedical optics: monograph. VNTU, Vinnytsya 2010.
  • [20] Pavlov S.V., Kozhemiako V.P., Petruk V.G., Kolesnik P.F.: Photoplethysmohrafic technologies of the cardiovascular control. Universum, Vinnitsa 2007.
  • [21] Pavlov S.V., Kozlovska T.I., et al.: Calibration of the metrological characteristics of photoplethysmographic multispectral device for diagnosis the peripheral blood circulation. Przegląd Elektrotechniczny 93(5)/2017, 79–82.
  • [22] Pavlov S.V., Tuzhanskyy S.E., Kozlovska T.I. , Kozak A.V.: A simulation model of distribution of optical radiation in biological tissues. Visnyk VNTU 3/2011, 191–195.
  • [23] Pradhapan P., Kuusela J., Viik J., Aalto-Setälä K., Hyttinen J.: Cardiomyocyte MEA data analysis (Cardio MDA) – a novel field potential data analysis software for pluripotent stem cell derived cardiomyocytes. PloS one 8/2013, 73637.
  • [24] Rampe D., Brown A.M.: A history of the role of the hERG channel in cardiac risk assessment. Journal of pharmacological and toxicological methods 68/2013, 13–22.
  • [25] Serkova V.K., Pavlov S.V., et al.: Medical expert system for assessment of coronary heart disease destabilization based on the analysis of the level of soluble vascular adhesion molecules. Proc. SPIE 10445/2017, 104453O.
  • [26] Singleton D.H., Boyd H., Steidl-Nichols J.V., Deacon M., de Groot M.J., Price D., Nettleton D.O., Wallace N.K., Troutman M.D., Williams C., Boyd J.G.: Fluorescently labeled analogues of dofetilide as high-affinity fluorescence polarization ligands for the human ether-a-go-go-related gene (hERG) channel. Journal of medicinal chemistry 28/2007, 2931–2941.
  • [27] Stett A., Egert U., Guenther E., Hofmann F., Meyer T., Nisch W., Haemmerle H.: Biological application of microelectrode arrays in drug discovery and basic research. Analytical and bioanalytical chemistry 377/2003, 486–495.
  • [28] Valentin J.P., Hoffmann P., De Clerck F., Hammond T.G., Hondeghem L.: Review of the predictive value of the Langendorff heart model (Screenit system) in assessing the proarrhythmic potential of drugs. Journal of pharmacological and toxicological methods 49/2004, 171–181.
  • [29] Vandenberg J.I., Varghese A., Lu Y., Bursill J.A., Mahaut-Smith M.P., Huang C.L.: Temperature dependence of human ether-a-go-go-related gene K+ currents. American Journal of Physiology-Cell Physiology 291/2006, 165–175.
  • [30] Vassilenko S., Valtchev, Teixeira J.P., Pavlov S.: Energy harvesting: an interesting topic for education programs in engineering specialities. Internet, Education, Science (IES-2016), 149–156.
  • [31] Wójcik W., Smolarz A.: Information Technology in Medical Diagnostics. LondonTaylor & Francis Group CRC Press Reference, London 2017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b609afe-0970-4ab2-a571-e3c4a93817ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.