PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study on biaxial dynamical compressive test and PFC2D numerical simulation of artificial rock sample with single joint

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dynamic biaxial compression tests and Particle Flow Code numerical simulations of the cement mortar specimens with a single joint were carried out to study the mechanical properties and crack evolution of artificial rock samples with a single joint. The effects of lateral stress σ2, loading rate V, the dip angle β (between the vertical loading direction and the joint) on the biaxial compressive strength σb, and the evolution law of crack were investigated. Test results showed that; (1) when both the dip angle β and the loading rate V remained unchanged, the biaxial compressive strength σb increased with the increase in the lateral stress σ2, while σ2 had no obvious effect on the crack evolution law; (2) when both the dip angle β and the lateral stress σ2 were kept unchanged, the loading rate V had an insignificant effect on the biaxial compressive strength σb and the crack evolution law; (3) when both the lateral stress σ2 and the loading rate V were constant, the biaxial compressive strength σb decreased first and then increased with the increase in the dip angle β; however, the dip angle β did not significantly affect the crack evolution law. The conclusions obtained in this paper are presented for the first time.
Rocznik
Strony
213--229
Opis fizyczny
Bibliogr. 16 poz., il., tab.
Twórcy
  • School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, China
autor
  • Geotechnical Engineering Department, Nanjing Hydraulic Research Institute, Nanjing, China
autor
  • China Construction Third Bureau First Engineering Co., Ltd., Wuhan, China
autor
  • Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
autor
  • School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, China
Bibliografia
  • [1] P.H.S.W. Kulatilake, B. Malama, and J. Wang, “Physical and particle flow modeling of jointed rock block behavior under uniaxial loading”, International Journal of Rock Mechanics and Mining Sciences, vol. 38, no. 5, pp. 641-657, 2001, DOI: 10.1016/S1365-1609(01)00025-9.
  • [2] H. Lee and S. Jeon, “An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression”, International Journal of Solids and Structures, vol. 48, no. 6, pp. 979-999, 2011, DOI: 10.1016/j.ijsolstr.2010.12.001.
  • [3] X. Chen, Z. H. Liao, and X. Peng, “Cracking process of rock mass models under uniaxial compression”, Journal of Central South University, vol. 20, pp. 1661-1678, 2013, DOI: 10.1007/s11771-013-1660-2.
  • [4] R.H. Cao, P. Cao, X. Fan, et al., “An experimental and numerical study on mechanical behavior of ubiquitousjoint brittle rock-like specimens under uniaxial compression”, Rock Mechanics and Rock Engineering, vol. 49, pp. 4319-4338, 2016, DOI: 10.1007/s00603-016-1029-6.
  • [5] S.Q. Yang, W.L. Tian, Y.H. Huang, et al., “An experimental and numerical study on cracking behavior of brittle sandstone containing two non-coplanar fissures under uniaxial compression”, Rock Mechanics and Rock Engineering, vol. 49, pp. 1497-1515, 2016, DOI: 10.1007/s00603-015-0838-3.
  • [6] Y.L. Zhao, L.Y. Zhang, W.J. Wang, et al., “Cracking and stress-strain behavior of rock-like material containing two flaws under uniaxial compression”, Rock Mechanics and Rock Engineering, vol. 49, pp. 2665-2687, 2016, DOI: 10.1007/s00603-016-0932-1.
  • [7] B. Zhang, S.C. Li, K.W. Xia, et al., “Reinforcement of rock mass with cross-flaws using rock bolt”, Tunnelling and Underground Space Technology, vol. 51, pp. 346-353, 2016, DOI: 10.1016/j.tust.2015.10.007.
  • [8] C.C. Huang, W.D. Yang, K. Duan, et al., “Mechanical behaviors of the brittle rock-like specimens with multi-nonpersistent joints under uniaxial compression”, Construction and Building Materials, vol. 220, pp. 426-443, 2019, DOI: 10.1016/j.conbuildmat.2019.05.159.
  • [9] S.Q. Yang, Y.H. Huang, and P.G. Ranjith, “Failure mechanical and acoustic behavior of brine saturated sandstone containing two pre-existing flaws under different confining pressures”, Engineering Fracture Mechanics, vol. 193, pp. 108-121, 2018, DOI: 10.1016/j.engfracmech.2018.02.021.
  • [10] Z.P. Xiang, H.L. Wang, W.Y. Xu, and L. Li, “Mechanical behavior of rock-like specimens with hidden smooth joints under triaxial compression”, Journal of Materials in Civil Engineering, vol. 31, no. 7, 2019, DOI: 10.1061/(ASCE)MT.1943-5533.0002787.
  • [11] W. Yao, Y.Y. Cai, J. Yu, et al., “Experimental and numerical study on mechanical and cracking behaviors of flawed granite under triaxial compression”, Measurement, vol. 145, pp. 573-582, 2019, DOI: 10.1016/j.measurement.2019.03.035.
  • [12] M. Prudencio and M. Van Sint Jan, “Strength and failure modes of rock mass models with non-persistent joints”, International Journal of Rock Mechanics & Mining Sciences, vol. 44, no. 6, pp. 890-902, 2007, DOI: 10.1016/j.ijrmms.2007.01.005.
  • [13] X. Fan, P.H.S.W. Kulatilake, X. Chen, et al., “Crack initiation stress and strain of jointed rock containing multi-cracks under uniaxial compressive loading: A particle flow code approach”, Journal of Central South University, vol. 22, pp. 638-645, 2015, DOI: 10.1007/s11771-015-2565-z.
  • [14] S.Q. Yang, Y.H. Huang, P.G. Ranjith, et al., “Discrete element modeling on the crack evolution behavior of brittle sandstone containing three fissures under uniaxial compression”, Acta Mechanica Sinica, vol. 31, no. 6, pp. 871-889, 2015, DOI: 10.1007/s10409-015-0444-3.
  • [15] R.H. Cao, P. Cao, H. Lin, et al., “Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading experimental studies and particle mechanics approach”, Rock Mechanics and Rock Engineering, vol. 49, pp. 763-783, 2016, DOI: 10.1007/s00603-015-0779-x.
  • [16] X.X. Yang, P.H.S.W. Kulatilake, X. Chen, et al., “Particle Flow Modeling of Rock Blocks with Nonpersistent Open Joints under Uniaxial Compression”, International Journal of Geomechanics, vol. 16, no. 6, pp. 1-17, 2016, DOI: 10.1061/(ASCE)GM.1943-5622.0000649.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b606b6d-9c3e-4639-ac39-513d96ee8cf8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.