PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of defibration pressure and fibres drying parameters on the properties of HDF made with recovered fibres

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Defibration pressure and fibres drying parameters influence on the HDF properties made with recovered fibres. The objective of this study was to investigate the defibration pressure and fibres drying process parameters (influence on the mechanical, physical properties and on formaldehyde content (FC) of ultrathin (2.5 mm) industrial high-density fibreboards (HDF) produced with 5% of recovered HDF (rHDF) addition. For this investigation the fibres were produced in industrial defibrator under four different set points: 0.65 MPa (V1), 0.90 MPa (V2), 1.00 MPa (V3) and 1.06 MPa (V4), dried in industrial two stage dryer with four different dryer inlet temperatures set points: 100oC (V00), 111oC (V11), 122oC (V22) and 133oC (V33). The results indicated that pressure is a significant factor and affects for all HDF properties. Too low defibrator pressure negatively influences HDF mechanical and physical properties as well as FC (high level). Regarding fibre drying temperature influence on HDF properties, no straight correlation was found. Linear negative correlation was found for modulus of rupture – 10% decrease comparing V00 to V33, internal bond – 23% decrease comparing V00 to V22 and surface soundness – also 23% decrease comparing V00 to V33.
PL
Wpływ ciśnienia defibracji oraz temperatury suszenia włókien na właściwości płyt pilśniowych suchoformowanych wysokiej gęstości z dodatkiem włókien poużytkowych Celem badań było określenie wpływu ciśnienia defibracji oraz temperatury suszenia włókien na właściwości mechaniczne i fizyczne ultra cienkich płyt (2.5 mm) włóknistych wysokiej gęstości (HDF), wytwarzanych z 5% dodatkiem włókien poużytkowych (rHDF). W pierwszej części wyprodukowano włókna przy zmiennym ciśnieniu defibracji 0.65 MPa (V1), 0.90 MPa (V2), 1.00 MPa (V3) and 1.06 MPa (V4). W drugiej części zastosowano różne nastawy temperatury suszenia włókien: 100oC (V00), 111oC (V11), 122oC (V22) and 133oC (V33). Wyniki wskazały, że ciśnienie defibracji jest istotnym czynnikiem i wpływa na wszystkie właściwości HDF. Zbyt niskie ciśnienie rozwłókniania negatywnie wpływa na właściwości mechaniczne i fizyczne HDF oraz FC (wysoki poziom). W przypadku wpływu temperatury suszenia włókien na właściwości HDF - nie stwierdzono prostej korelacji. Stwierdzono liniową ujemną korelację wytrzymałości na zginanie statyczne - spadek o 10% porównując V00 do V33, IB - spadek o 23% porównując V00 do V22 i SS - również spadek o 23% porównując V00 do V33.
Słowa kluczowe
Twórcy
autor
  • Department of Technology and Entrepreneurship in Wood Industry, Faculty of Wood Technology/Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW
  • Department of Technology and Entrepreneurship in Wood Industry, Faculty of Wood Technology/Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW
Bibliografia
  • 1. AURIGA R. and BORUSZEWSKI P. 2013. Influence of Storage Raw Material in the Form of Wood Chips on the Properties of Particleboard; Annals of Warsaw University of Life Sciences – SGGW Forestry and Wood Technology 82: 27–30.
  • 2. AYDIN I., GURSEL C., SEMRA C. and CENK D. 2006. Effects of Moisture Content on Formaldehyde Emission and Mechanical Properties of Plywood. Building and Environment 41 (10): 1311–16. https://doi.org/10.1016/j.buildenv.2005.05.011.
  • 3. AYRILMIS N., BENTHIEN J. T. and OHLMEYER M. 2017. “Effect of Wood Species, Digester Conditions, and Defibrator Disc Distance on Wettability of Fibreboard.” Journal of Wood Science 63 (3): 248–52. https://doi.org/10.1007/s10086-017-1620-9.
  • 4. BEKHTA P., NIEMZ P. 2009. Effect of Relative Humidity on Some Physical and Mechanical Properties of Different Types of Fibreboard. European Journal of Wood and Wood Products 67 (3): 339–42. https://doi.org/10.1007/s00107-009-0330-4.
  • 5. BENTHIEN J. T., BAHNISCH C., HELDNER S. and OHLMEYER M. 2014. Effect of Fibre Size Distribution on Medium-Density Fibreboard Properties Caused by Varied Steaming Time and Temperature of Defibration Process. Wood and Fibre Science 46(2), 175–185.
  • 6. CAI Z., MUEHL J. H. and WINANDY J. E. 2006. “Effects of Panel Density and Mat Moisture Content on Processing Medium Density Fibreboard.” Forest Products Journal 56 (10): 20–25.
  • 7. CAMPANA C., LEGER R., SONNIER R., FERRY L. and IENNY P. 2018. Effect of Post Curing Temperature on Mechanical Properties of a Flax Fibre Reinforced Epoxy Composite. Composites Part A: Applied Science and Manufacturing 107: 171–79. https://doi.org/10.1016/j.compositesa.2017.12.029.
  • 8. CARLL C. G. 1996. Review of Thickness Swell in Hardboard Siding Effect of Processing Variables, United States Department of Agriculture, Forest Service, General Technical Report FPL-GTR-96.
  • 9. HWANG C., HSE C., SHUPE T. F. 2005. Effects of Recycled Fibre on the Properties of Fibreboard Panels. Forest Products Journal 55. No. 1 (9828): 61–64.
  • 10. EN-326-1: Wood Based Panels – Sampling, Cutting and Inspection. 1994.
  • 11. EN 12460-5: Wood-Based Panels – Determination of Formaldehyde Release – Extraction Method (Called the Perforator Method). 2016.
  • 12. EN 310: Wood-Based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength. 1993.
  • 13. EN 311. 2003. Wood-based panels — Surface soundness — Test method, issued 2003.
  • 14. EN 317: Particleboards and Fibreboards – Determination of Swelling in Thickness after Immersion in Water. 1993.
  • 15. EN 319: Particleboards and Fibreboards – Determination of Tensile Strength Perpendicular to the Plane of the Board. 1993.
  • 16. EN 322: Wood-Based Panels – Determination of Moisture Content. 1993.
  • 17. EN 323: Wood-Based Panels – Determination of Density. 1993.
  • 18. EN 382-1. 1993. Fibreboards. Determination of surface absorption. Test method for dry process fibreboards, issued 1993.
  • 19. EN 622-5: Fibreboards. Specifications. Requirements for Dry Process Boards (MDF). 2009.
  • 20. Fibre Drying Process. 2010. 2010. pdf.directindustry.com/pdf/dieffenbacher/fibre-drying-process/70088-325081.html.
  • 21. Flash Tube Dryer. Accessed February 3, 2020. www.dieffenbacher.com/en/wood-based-panels/products/energy-systems-and-drying/flash-tube-dryer.
  • 22. Food and Agriculture Organization. Forestry Production and Trade. 2020. 2020. http://www.fao.org/fa ostat/en/#data/FO.
  • 23. GANEV S., CLOUTIER A., BEAUREGARD R. and GENDRON G. 2003. Effect of Panel Moisture Content and Density on Moisture Movement in MDF. Wood and Fibre Science 35 (1): 68–82.
  • 24. GAO Y., HUA J., CHEN G., CAI L., JIA N., ZHU L. 2018. Com Prediction of Fibre Quality Using Refining Parameters in Medium-Density Fibreboard Production via the Support Vector Machine Algorithm. BioResources 13(4): 8184–97.
  • 25. GROOM L. H., SO C.-L., ELDER T., PESACRETA T. and RIALS T. 2008. Effects of Refiner Pressure on the Properties of Individual Wood Fibres. In Characterization of the Cellulosic Cell Wall. https://doi.org/ 10.1002/9780470999714.ch17.
  • 26. GUIMEI J., GUO T. and DING Y. 2016. A New Hybrid Forecasting Approach Applied to Hydrological Data : A Case Study on Precipitation. https://doi.org/10.3390/w8090367.
  • 27. GUL W., KHAN A. and SHAKOOR A. 2017. Impact of Hot Pressing Temperature on Medium Density Fibreboard (MDF) Performance. Advances in Materials Science and Engineering 2017. https://doi.org/10.1155/2017/4056360.
  • 28. HONG M. K., LUBIS M. A. R. and PARK B. D. 2017. Effect of Panel Density and Resin Content on Properties of Medium Density Fibreboard. Journal of the Korean Wood Science and Technology 45 (4): 444–55. https://doi.org/10.5658/WOOD.2017.45.4.444.
  • 29. https://Www.Drewno.Pl/Artykuly/10837,Rekordowo-Wysokie-Ceny-Za-Drewno-w-i-Kwartale-2017.Html., Accesed 03 2020
  • 30. IBRAHIM Z., AZIZ A. A., RAMLI R., MOKHTAR A. and LEE S. 2013. Effect of Refining Parameters on Medium Density Fibreboard (MDF) Properties from Oil Palm Trunk (Elaeis Guineensis). Open Journal of Composite Materials 2013 (October): 127–31. https://doi.org/10.4236/ojcm.2013.34013.
  • 31. IOS-MAT-0003 Formaldehyde Requirements of Wood, Wood-Based and Wood-like Natural Materials and Products. 2020. Vol. 1.
  • 32. KHALIL H. P. S. A., NUR FIRDAUS M. Y., ANIS M., RIDZUAN R. 2008. The Effect of Storage Time and Humidity on Mechanical and Physical Properties of Medium Density Fibreboard. Polymer-Plastics Technology and Engineering 47 (10): 1046–53.
  • 33. KLIMCZEWSKI M. and NICEWICZ D. 2013. Wybrane Właściwości Mas Włóknistych Przeznaczonych Na Płyty Hdf z Dodatkiem Włókien Poużytkowych. Drewno 189 (189): 89–100. https://doi.org/10.12841/wood.1644-3985.012.06.
  • 34. KOWALUK G., SANDAK J., PALUBICKI 2008. Wettability of Chosen Alternarive Lignocellulosic Raw Material for Particleboard Production. International Panel Products Symposium Preceeding, 2008.
  • 35. LATIBARI A., GHASEBINASAB H., ROOHNIA M. and KARAGARFARD A. 2012. The Effect of Fibre Moisture and Drying Temperature on Hardwood Fibre Physical Chemistry and Strength of Medium Density Fibreboard. Lignocellulose Journal 1 (1): 3–12.
  • 36. MENUES P., BELGACEM N., COSTA C. A. V., COSTA A. P. 2003. Influence of Impulse Drying on the Curing of Polyamide. Cellulose Chemistry and Technology15837(5): 439–451.
  • 37. MEYER N. and THOEMEN H. 2007. Gas Pressure Measurements during Continuous Hot Pressing of Particleboard. Holz Als Roh - Und Werkstoff 65 (1): 49–55. https://doi.org/10.1007/s00107-006-0140-x.
  • 38. NICEWICZ D., MONDER S. 2011. The Influence of the Kind of Glue Resins on the Properties of MDF. Annals of Warsaw University of Life Sciences - SGGW Forestry and Wood Technology 75: 127–29.
  • 39. NICEWICZ D., MONDER S. 2014. “The Influence of Moisture of Fibre Mats on the Properties of MDF Boards.” Annals of Warsaw University of Life Sciences – SGGW Forestry and Wood Technology 88: 174–77.
  • 40. NICEWICZ D., SALA C. M. 2013. Technologiczne Aspekty Produkcji MDF. Skrypt Dla Studentów. Warszawa: Wydawnictwo SGGW.
  • 41. NICEWICZ D., SALA C. M. 2014. Właściwości i Zastosowanie Płyt MDF. Skrypt Dla Studentów. Warszawa: Wydawnictwo SGGW.
  • 42. NOURBAKHSH A., ASHORI A., LATIBARI A. J. 2010. “Evaluation of the Physical and Mechanical Properties of Medium Density Fibreboard Made from Old Newsprint Fibres.” Journal of Reinforced Plastics and Composites 29 (1): 5–11. https://doi.org/10.1177/0731684408093972.
  • 43. ONIŚKO W. 2011. Nowe Generacje Tworzyw Drzewnych i Nowoczesne Technologie. In Drewnowizja. Poznań: Instytut Technologii Drewna w Poznaniu. https://www.drewno.pl/artykuly/7524,nowe-generacje-tworzyw-drzewnych-i-nowoczesne-technologie.html Accessed: 03 2020.
  • 44. PARK B. D., KIM Y.-S., RIEDL B. 2001. Effect of Wood-Fibre Characteristics on Medium Density Fibreboard (MDF) Performance. Journal of the Korean Wood Science and Technology 29 (3): 27–35.
  • 45. PKLN-8MAACE. 2011. Swedwood International Corporate Technical Standard Specification of HDF, Version: 04.
  • 46. ROFFAEL E. 2012. Influence of Resin Content and Pulping Temperature on the Formaldehyde Release from Medium Density Fibreboards (MDF). European Journal of Wood and Wood Products 70 (5): 651–54. https://doi.org/10.1007/s00107-012-0614-y.
  • 47. SALA C. M. 2020. Wpływ Natrysku Wody Na Przegrzewanie Kobierca Włóknistego Płyt HDF, z Dodatkiem Włókien Poużytkowych. Biuletyn Informacyjny OB-RPPD 1–2: 45–55. https://doi.org/doi.org/.
  • 48. SALA C. M., ROBLES E. and KOWALUK G. 2020. Influence of Adding Offcuts and Trims with a Recycling Approach on the Properties of High-Density Fibrous Composites. Polymers 12 (6). https://doi.org/10.3390/POLYM12061327.
  • 49. SARI B., GOKAY N., AYRILMIS N., BAHAROGLU M. and BARDAK S. 2013. The Influences of Drying Temperature of Wood Particles on the Quality Properties of Particleboard Composite. Drying Technology. https://doi.org/10.1080/07373937.2012.711791.
  • 50. SHI J. L. and ZHANG S. Y 2005. Effect of Juvenile Wood on Strength Properties and Dimensional Stability of Black Spruce Medium-Density Fibreboard Panels 59: 1–9. https://doi.org/10.1515/HF.2005.001.
  • 51. THOEMEN H., HASELEIN C. R. and HUMPHERY P. E. 2006. Modeling the Physical Processes Relevant during Hot Pressing of Wood-Based Composites. Part II. Rheology. Holz als Roh- und Werkstoff 64 (2): 125–33. https://doi.org/10.1007/s00107-005-0032-5.
  • 52. THOEMEN H., IRLE M. and SERNERK M. 2010. Wood-Based Panels An Introduction for Specialists. An Introduction for Specialists, Published by BrunelUniversity Press, London, England.
  • 53. TOLVIK CONSULTING 2018. UK Dedicated Biomass Statistics 2017. file://plorl-nt0002/Users_Profiles/salcon/Documents/Doktorat/Bibliografia/Tolvik-UK-Biomass-Statistics-2017-2.pdf., Accesed 03 2020.
  • 54. TRECHSEL H. R., BOMBERG M. T., CARLL C. and WIEDENHOEFT A. C. 2010. Moisture-Related Properties of Wood and the Effects of Moisture on Wood and Wood Products. Moisture Control in Buildings: The Key Factor in Mold Prevention – 2nd Edition, 54-54-26. https://doi.org/10.1520/mnl11544m.
  • 55. WAN H., WANG X. M., BARRY A. and SHEN J. 2014. Recycling Wood Composite Panels: Characterizing Recycled Materials. BioResources 9 (4): 7554–65. https://doi.org/10.15376/biores.9.4.7554-7565.
  • 56. WONG E., ZHANG M., WANG Q., HAN G. and KAWAI S. 2000. Formation of the Density Profile and Its Effects on the Properties of Fibreboard. Journal of Wood Science 46 (3): 202–9. https://doi.org/10.1007/BF00776450.
  • 57. XING C., DENG J. ZHANG S. Y. 2007. Effect of Thermo-Mechanical Refining on Properties of MDF Made from Black Spruce Bark. Wood Science and Technology 41(4): 329–38. https://doi.org/10.1007/s00226-006-0108-3.
  • 58. XING C., WANG S. and PHARR G. M. 2009. Nanoindentation of Juvenile and Mature Loblolly Pine (Pinus Taeda L. Wood Science and Technology 43 (615). https://doi.org/10.1007/s00226-009-0266-1.
  • 59. XU J., WIDYORINI R. and YAMAUCHI H. 2006. Development of Binderless Fibreboard from Kenaf Core. https://doi.org/10.1007/s10086-005-0770-3.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b5a80d1-cd94-4d8d-acc8-6a1408916c27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.