PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ domieszkowania halogenkami metali alkalicznych na właściwości warstw perowskitowych w ogniwach słonecznych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The impact of alkali metal halide doping on the properties of perovskite layers in solar cells
Języki publikacji
PL
Abstrakty
EN
Perovskite cells are a new generation of solar cells that have gained significant attention in the field of photovoltaics due to their unique properties and potential benefits. Perovskites are a class of materials that have a characteristic crystal structure known as the perovskite structure. The typical chemical formula of perovskite is ABX3, where 'A' and 'B' are cations that differ in size, and 'X' is an anion, most often halogen. Doping with alkali metals in perovskite materials has shown a significant improvement in the efficiency of the solar cell, which is confirmed by numerous scientific studies. The addition of ru-bidium bromide and other alkali metals, such as lithium, sodium and potassium, affects the microstructure, electronic and optical properties of perovskites, which is crucial for the efficiency and stability of solar cells. The paper presents research results on doping with alkali metals for inorganic perovskite cells based on CsPbBr3. The process of doping with alkali metals was carried out in various stages of creating a Perovskite cell. The work presents the influence of the dopant on the structure of the perovskite and the obtained cell, as well as its optical and electrical properties. The conducted research indicates a positive effect of the addition of rubidium bromide, both in the phase of creating the lead bromide layer and during the application of cesium bromide. The most promising is the admixture of 9% rubidium bromide in the cesium bromide layer. In this way, the applied dopant is located in the perovskite structure, changing its optical and electrical properties.
Rocznik
Strony
66--78
Opis fizyczny
Bibliogr. 9 poz., rys., wykr.
Twórcy
  • University of Bielsko-Biala, Department of Materials Engineering, Willowa 2, 43-309 Bielsko-Biała, Poland
  • Institute of Metallurgy and Materials Science of Polish Academy of Sciences, Reymonta 25, 30-059 Kraków, Poland
  • University of Bielsko-Biala, Department of Materials Engineering, Willowa 2, 43-309 Bielsko-Biała, Poland
  • University of Bielsko-Biala, Department of Materials Engineering, Willowa 2, 43-309 Bielsko-Biała, Poland
Bibliografia
  • 1. Blakers A.W., Green M.A., Leo T., Outhred H., Robins B. 1991. The role of photovoltaics in reducing greenhouse gas emissions. Australian Government Publishing Service, Canberra.
  • 2. De Wolf S., Descoeudres A., Holman Z.C., Ballif C. 2012. High-efficiency silicon heterojunction solar cells: A review. Green, 2, 1, 7–24.
  • 3. Li Y., Duan J., Yuan H., Zhao Y., He B., Tang Q. 2018. Lattice modulation of alkali metal cations doped Cs1−xRxPbBr3 halides for inorganic perovskite solar cells. Solar RRL, 2, 10, 1800164.
  • 4. Mele A., Metrangolo P., Neukirch H., Pilati T., Resnati G. 2005. A halogen-bonding-based heteroditopic receptor for alkali metal halides. Journal Of The American Chemical Society, 127 (43), 14972–14973.
  • 5. Sánchez J.D.G., Messina S., Álvarez J.C., Nair P.K. 2022. Optical absorption and light-generated cur-rent density in chemically deposited antimony sulfide selenide thin films used for solar cell development. Journal of Materials Science: Materials in Electronics, 33, 12026–12038.
  • 6. Schleussner C-F., Lissner T.K., Fischer E.M., Wohland J., Perrette M., Golly A., Rogelj J., Childers K., Schewe J., Frieler K., Mengel M., Hare W., Schaeffer M. 2016. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5°C and 2°C. Earth System Dynamics, 7, 2, 327–351.
  • 7. Sze S.M, Lee M.K. 1985. Semiconductor Devices. Physics and Technology. John Wiley & Sons, New York.
  • 8. Wang J.T-W., Wang Z., Pathak S., Zhang W. (2016) Snaith H.J. 2016. Efficient perovskite solar cells by metal ion doping. Energy & Environmental Sciences, 9, 2892–2901.
  • 9. Warren R., Price J., VanDerWal J., Cornelius S., Sohl H. 2018. The implications of the United Nations Paris Agreement on climate change for globally significant biodiversity areas. Climatic Change, 147, 395–409.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b54d38b-daf6-4af9-84e1-a23f64f633c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.