PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CFD modelling of thermal comfort in the passenger coach

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of numerical simulations of thermal comfort in a passenger coach. The numerical model with people’s presence was developed and appropriate boundary conditions were prepared. The ANSYS CFX program was used for the simulations. The calculations were carried out for summer and winter conditions. The predicted mean vote (PMV), predicted percentage dissatisfied (PPD) and draft rate (DR) were calculated to assess the thermal comfort of passengers. The requirements of railway standards in terms of passenger comfort assessment were also verified. Based on the simulation results, it was found that the thermal comfort conditions of the passengers in the coach were not fully satisfactory, especially in summer.
Rocznik
Strony
133--146
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
  • PhD; Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Konarskiego 20, 44-100 Gliwice, Poland
  • MSc Eng.; Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Konarskiego 20, 44-100 Gliwice, Poland
Bibliografia
  • [1] Ferdyn-Grygierek J., Sarna I., Grygierek K. (2021). Effects of Climate Change on Thermal Comfort and Energy Demand in a Single-Family House in Poland, Bulidings, 11, 12, 1-17.
  • [2] Grygierek K., Sarna I. (2020). Impact of Passive Cooling on Thermal Comfort in a Single-Family Building for Current and Future Climate Conditions, Energies, 13, 5332.
  • [3] Lipczyńska A., Kaczmarczyk J., Melikov A. K. (2015). Thermal environment and air quality in office with personalized ventilation combined with chilled ceiling, Building and Environment 92,603-614.
  • [4] Kaczmarczyk J., Ferdyn-Grygierek J. (2020). Thermal comfort and energy use with local heaters, Energies, 13(11), 1-14.
  • [5] Kaczmarczyk J., Lipczyńska A., Kateusz P. (2017). Indoor environment quality evaluation in dwellings: a Polish case study, Architecture Civil Engineering Environment, 10(4), 163-171.
  • [6] Nastase I., Danca P., Bode F., Croitoru C., Fechete L., Sandu M. Coşoiue I, C. (2022). A regard on the thermal comfort theories from the standpoint of Electric Vehicle design — Review and perspectives, Energy Reports, 8, 10501-10517.
  • [7] Fanger P. Thermal comfort. Analysis and Applications in Environmental Engineering, McGraw-Hill, USA, 1972.
  • [8] EN ISO 7730: 2005 Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort.
  • [9] ANSI/ASHRAE Standard 55-2010 Thermal Environmental Conditions for Human Occupancy.
  • [10] EN 13129:2016: Railway applications - Air conditioning for main line rolling stock - Comfort parameters and type tests.
  • [11] UIC leaflet 553 Heating, ventilation and air-conditioning in coaches - Standard tests.
  • [12] Sarna I., Palmowska A. (2019). Modelling of the airflow in the passenger coach. Architecture Civil Engineering Environment, 12(4),125-133.
  • [13] Zhang Z., Lu Y. Numerical study on air quality and thermal comfort in high speed train compartment with underfloor air supply. Proceedings of the 2nd International Conference on Industrial Aerodynamics, Qingdao, China, 18-20 October 2017.
  • [14] http://www.railway-technical.com/trains/rollingstock-index-l/coach-parts.html, Available online: 07.04.2018.
  • [15] Aliahmadipour M., Abdolzadeh M., Lari K. (2017). Air flow simulation of HVAC system in compartment of a passenger. Applied Thermal Engineering, 8, 973-990.
  • [16] Goelz P., Orellano A. Simulation of transient thermal comfort in trains, Proceedings of the 5th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Sun City, South Africa, 1-4 July 2007.
  • [17] Karthik K., Nasrulla M., Raj T. K., Karthick N. Krishnakanth S.(2021). Comparative CFD analysis on conditioned air flow and temperature distribution in metro train for different cities of India, International Journal of Modern Agriculture, 10, 10.
  • [18] Schmeling D., Bosbach J.(2017). On the influence of sensible heat release on displacement ventilation in a train compartment, Building and Environment, 125, 248-260.
  • [19] Meyenberg M., Schemling D., Winter S. A moving thermal manikin for the simulation of walking passengers in aircraft of trains, Proceedings of the Roomvent & Ventilation, Espoo, Finland, 2-5 June 2018.
  • [20] Zhang Y., Li J., Sun H., Liu J., Chen Q. (2015). Evaluation of different air distribution systems for sleeping spaces in transport vehicles, Building and Environment, 94, 665-675.
  • [21] Yang L., Li X., Tu J. Numerical study of cabin interior air environment response of high-speed trains passing each other, Proceedings of the 4th International Conference On Building Energy, Environment, Melbourne, Australia, 5-9 February 2018.
  • [22] Palmowska A., Walczyk K. CFD Modelling of The Airflow in The Driver’s Cabin of a Modern Rail Vehicle. Proceedings of the 5th World Congress on Mechanical, Chemical, and Material Engineering (MCM’19), Lisbon, Portugal, August 15-17, 2019.
  • [23] Alam M., S., Salve U. R. (2020). Enhancement of thermal comfort inside the kitchen of non-airconditioned railway pantry car, International Journal of Heat and Technology, 39, 1, 275-291.
  • [24] Konstantinov M., Wagner C. Flow and Thermal Comfort Simulations for Double Decker Train Cabins with Passengers. Proceedings of the Third International Conference on Railway Technology: Research, Development and Maintenance, Cagliaru, Italy, 5-8 April 2016.
  • [25] Ghosh S., Bharadwaj S. J., Bharadwaj S. J. A design study on a proposed high speed train service in Western India A synergistic dialogue of optimal speed and cabin comfort using CFD. Proceedings of the 2017 IEEE Region 10 Symposium, Penang, Malaysia, 5-8 November 2017.
  • [26] Autodesk (2011) ‘Autodesk Ecotect Analysis’, products. Available online: http://www.cadpoint.co.uk/ecotectanalysis/(accessed 29 December 2016).
  • [27] Haller G. (2006). Thermal Comfort in Rail Vehicles. RTA Rail Tec Arsenal Fahrzeugversuchsanlage GmbH, Vienna.
  • [28] Pełech A. (2009). Wentylacja i klimatyzacja - podstawy (Ventilation and air-conditioning - fundaments), Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław.
  • [29] Lipska B., Palmowska A., Ciuman P., Koper P. (2015). Modelowanie numeryczne CFD w badaniach i projektowaniu rozdziału powietrza w pomieszczeniach wentylowanych (CFD numerical modelling in research and design of air distribution in ventilated rooms), Instal, 3, 33-43.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b547e79-1bc1-4800-a1f6-8af843a76f45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.