PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zmienność przestrzenna uwilgotnienia hydrofobowej gleby organicznej w warunkach przepływu preferencyjnego

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Spatial Variability in Soil Moisture Content under Preferential Flow in Hydrophobic Organic Soil
Języki publikacji
PL
Abstrakty
EN
Wettability is one of the most important peculiarities of soil and it directly influences their physical, mechanical, chemical, properties biological and their fertility. Soil water repellency can lead to the development of unstable wetting and preferential flow paths. Water flow and solute transport patterns are complex under such conditions. The existence of the water repellent layer can have negative influence on soil moisture content because it reduces the amount of water supplied from ground water level by capillary rise, infiltration from the soil surface and also for retention and therefore acts as a constraint in the restoration of drained peatlands by rewetting. That means that repellency can have significant influence on restoration, conservation and management of the peat resources. The paper presents the result of the spatial variability of soil moisture in a small area in a hydrophobic peat-muck profile located within Kuwasy drainage-subirrigation system at the Biebrza River Valley. Soil moisture variability study was carried out on an area of 1 m2 and 0.5 depth in the two measurement periods. The measurements were made in two versions: the first after artificial irrigation (60 mm) and the second after an intense rain. In both of measuring periods the study area was divided into a regular grid of squares. Spatial variability of the investigated traits was evaluated using parameters of the theoretical variogram and cross variogram models. The variability of soilmoisture in the profile after intense rainfall was higher than after irrigation. Themaximum range of the spatial correlation (189 cm) soil moisture was observedin the alder peat layer for measurements made after irrigation. The observedvariability is associated with high hydrophobicity of studied soil. The observedvariability may be important in the assessment of current water resources of thesoil profile. The relationship between water content and the surface of the samplingindicates that, following the increase of the sampling surface the dispersionof results gets smaller, and the distributions are symmetric. The relationshipbetween the coefficient of variation CV and the surface sampling showsthat most of the variability occurred in the top moorsh layer of soil tested (CV =40%). To check the stationary conditions for soil moisture measurements, theanalysis of the trend were made. Elimination of the trend also provided a normaldistribution of residual moisture values. Semivariance and cross variance forresidual moisture values were calculated, and then were leveled with spherical or linear model. From the presented data results that after irrigation as well as heavy rain falls there exists the relationship between the distribution of moisture muck individual layers (up to 30 cm) and can be described using a spherical model. The results show large spatial variability of the total variance of soil moisture and poor soil moisture spatial correlation between the different layers of the soil profile.
Rocznik
Strony
580--607
Opis fizyczny
Bibliogr 28 poz., tab., rys.
Twórcy
autor
  • Szkoła Główna Gospodarstwa Wiejskiego, Warszawa
  • Szkoła Główna Gospodarstwa Wiejskiego, Warszawa
autor
  • Szkoła Główna Gospodarstwa Wiejskiego, Warszawa
autor
  • Szkoła Główna Gospodarstwa Wiejskiego, Warszawa
Bibliografia
  • 1. Berglund K., Persson L.: Water repellence of cultivated organic soils. Acta Agriculture Scandinavica. Section B Soil and Plant Science 46. 145–152 (1996).
  • 2. Brandyk T., Gnatowski T., Szatyłowicz J.: Spatial variability of some physical properties of decomposed lowland peat soil. Proceedings of 10th International Peat Congress, 27 May-2 June, Bremen (ed. G.W. Luttig), vol. 2, 294–305 (1996).
  • 3. Brandyk T., Skąpski K., Szatyłowicz J.: Zmienność przestrzenna właściwości fizycznych gleby. W: „Współczesne problemy melioracji” (red. C. Somorowski), Wyd. SGGW, 140–151 (1993).
  • 4. Comas, X., Slater L., Reeve A.: Spatial variability in peat soils is revealed by ground penetrating radar (GPR). Geophysical Research Letters. 32: L08401. 2005.
  • 5. Emerson J.D., Wong G.Y.: Resistant non-additive fit for two way tables. In: Exploring Data Tables, Trends and Shapes. John Wiley and Sons. N.Y. 67–83 (1985).
  • 6. Gnatowski T., Szatyłowicz J., Brandyk T., Oleszczuk R.: Spatial variability of hydraulic properties in moorsh layer. Proceedings of the 11th International Peat Congress. Quebec. August 6–12, v. 2, 575–584 (2000).
  • 7. Goebel M., O., Bachmann J., Reichstein, M. Janssens I. A., Guggenberger G., Soil water repellency and its implications for organic matter decomposition–is there a link to extreme climatic events? Global Change Biology. 17: 2640–2656 (2011).
  • 8. Hamlett J.M., Horton R., Cressie N.A.C.: Resistant and exploratory techniques for use in semivariogram analysis. Soil Sci. Soc. Am. J., 50. 868–875 (1986).
  • 9. Hewelke E., Szatyłowicz J., Gnatowski T., Oleszczuk R.: Effects of soil water repellency on moisture patterns in a degraded Sapric Histosol. Land Degradation & Development. 2014. DOI: 10.1002/ldr.2305
  • 10. Jordán A., Zavala L. M., Mataix-Solera J., Doerr S. H.: Soil water repellency: Origin, assessment and geomorphological consequences. Catena, 108, 1–5 (2013).
  • 11. Letey J., Osborn J., Pelishek R.E.: Measurement of liquid-solid contact angles in soil and sand. Soil Sci. 93: 149–153 (1962).
  • 12. Liberacki D.: Dynamika zmian stanów wód gruntowych i uwilgotnienia gleb siedlisk leśnych w zlewni cieku Hutka, Rocznik Ochrona Środowiska (Annual Set The Environment Protection), 13. 1927–1942 (2011).
  • 13. Malik R.S., Kumar S., Dahiya I.S.: An approach to quick determination of some water transmission characteristics of porous media. Soil Sci., 137: 395–400 (1984).
  • 14. Marcinek J.: Parametryzacja środowiska glebowego w aspekcie gospodarki wodnej gleb. Problemy Agrofizyki. z 67: 20–52 (1992).
  • 15. McBratney A.B., Webster R.: Choosing functions for semi-variograms of soil properties and fitting them to sampling estimates. J. Soil. Sci., 37: 617–639 (1986).
  • 16. Mohanty B.P., Kanwar R.S., Horton R.: A robust-resistant approach to interpret spatial behavior of saturated hydraulic conductivity of a Glacial till soil under no-tillage system. Water Resour. Res., 27: 2979–2992 (1991).
  • 17. Oleszczuk R.; Gnatowski, T.; Brandyk, T., Szatylowicz, J.: Calibration of TDR for moisture content monitoring in moorsh layers. In “Wetlands: Modeling, Monitoring, Management” (ed. by T. Okruszko, E. Maltby, J. Szatyłowicz, D. Świątek, W. Kotowski, pp. 121–124. Taylor & Francis Group. London 2007.
  • 18. Oleszczuk R., Truba M.: The analysis of some physical properties of drained peat-moorsh soil layers. Annals of Warsaw University of Life Sciences – SGGW. Land Reclamation 45: 41–48. 2013. DOI: 10.2478/sggw-2013-0004
  • 19. Piecuch T., Równanie Darcy jako podstawa analizy teoretycznej szczególnych przypadków procesu filtracji. Rocznik Ochrona Środowiska (Annual Set The Environment Protection), 11, 299–319 (2009).
  • 20. Ritsrma C.J., Dekker L.W.: Influence of sampling strategy on detecting preferential flow paths in water repellent sand. J. Hydrol., 177, 33–45.(1996).
  • 21. Szatylowicz J., Gnatowski T., Szejba D., Oleszczuk R., Brandyk T., Kechavarzi C.: Moisture content variability in drained fen soil. In “Wetlands:
  • Modeling, Monitoring, Management” (ed. by T. Okruszko, E. Maltby, J. Szatyłowicz, D. Świątek, W. Kotowski, 113–120. Taylor & Francis Group. London 2007.
  • 22. Täumer K, Stoffregen H, Wessolek G.: Determination of repellency distribution using soil organic matter and water content. Geoderma 125, 107–115 (2005).
  • 23. Waniek E., Sztyłowicz J., Brandyk T.: Moisture patterns In water repellentpeat-moorsh soil. Roczniki Akademii Rolniczej w Poznaniu CCCX:199–209 (1999).
  • 24. Waniek E., Sztyłowicz J., Brandyk T.: Determination of soil-water contact angles in peat-moorsh soils by capillary rise experiments. Suo 51 (3): 149–154 (2000).
  • 25. Waniek E.: Wpływ zwilżalności na uwilgotnienie gleby torfowomurszowej. Praca doktorska. SGGW. Warszawa 2002.
  • 26. Webster R.: Quantitative spatial analysis of soil in the field. Advances in soil science, 3: 1–70 (1985).
  • 27. Webster R., Oliver M.A.: Statistical methods in soil and land resource survey. Oxford University Press. 316 (1990).
  • 28. Wójcik A.R.: Statystyka matematyczna z elementami rachunku prawdopodobieństwa. Wyd. SGGW, Warszawa 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b544995-0b92-49c7-bc32-687cf782390f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.