PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Encoding Threshold Boolean Networks into Reaction Systems for the Analysis of Gene Regulatory Networks

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gene regulatory networks represent the interactions among genes regulating the activation of specific cell functionalities and they have been successfully modeled using threshold Boolean networks. In this paper we propose a systematic translation of threshold Boolean networks into reaction systems. Our translation produces a non redundant set of rules with a minimal number of objects. This translation allows us to simulate the behavior of a Boolean network simply by executing the (closed) reaction system we obtain. This can be very useful for investigating the role of different genes simply by “playing” with the rules. We developed a tool able to systematically translate a threshold Boolean network into a reaction system. We use our tool to translate two well known Boolean networks modelling biological systems: the yeast-cell cycle and the SOS response in Escherichia coli. The resulting reaction systems can be used for investigating dynamic causalities among genes.
Wydawca
Rocznik
Strony
205--225
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • Dipartimento di Informatica, Università di Pisa, Italy
  • Dipartimento di Informatica, Università di Pisa, Italy
autor
  • Dipartimento di Informatica, Università di Pisa, Italy
autor
  • Department of Applied Informatics, Comenius University in Bratislava, Slovak Republic
  • Dipartimento di Informatica, Università di Pisa, Italy
  • Dipartimento di Informatica, Università di Pisa, Italy
Bibliografia
  • [1] Schlitt T, Brazma A. Current approaches to gene regulatory network modelling. BMC bioinformatics, 2007. 8(6):S9. doi:10.1186/1471-2105-8-S6-S9.
  • [2] Derrida B. Dynamical phase transition in nonsymmetric spin glasses. Journal of Physics A: Mathematical and General, 1987. 20(11):L721-L725. doi:10.1088/0305-4470/20/11/009.
  • [3] Kürten K. Critical phenomena in model neural networks. Physics Letters A, 1988. 129(3):157-160. doi:10.1016/0375-9601(88)90135-1.
  • [4] Rohlf T, Bornholdt S. Criticality in random threshold networks: annealed approximation and beyond. Physica A: Statistical Mechanics and its Applications, 2002. 310(1-1):245-259. doi:10.1016/S0378-4371(02)00798-7.
  • [5] Rudell R, Sangiovanni-Vincentelli A. Multiple Valued Minimization for PLA Optimization. IEEE Trans. on CAD of Integrated Circuits and Systems, 1987. 6(5):727-750. doi:10.1109/TCAD.1987.1270318.
  • [6] Ehrenfeucht A, Rozenberg G. Reaction systems. Fundamenta informaticae, 2007. 75(1-4):263-280.
  • [7] Brijder R, Ehrenfeucht A, Main MG, Rozenberg G. A tour of reaction Systems. Int. J. Found. Comput. Sci., 2011. 22(7):1499-1517. doi:10.1142/S0129054111008842.
  • [8] Gori R, Levi F. Abstract interpretation based verification of temporal properties for BioAmbients. Inf. Comput., 2010. 208(8):869-921. doi:10.1016/j.ic.2010.03.004.
  • [9] Bodei C, Gori R, Levi F. An Analysis for Causal Properties of Membrane Interactions. Electr. Notes Theor. Comput. Sci., 2013. 299:15-31. doi:10.1016/j.entcs.2013.11.003.
  • [10] Bodei C, Gori R, Levi F. Causal static analysis for Brane Calculi. Theor. Comput. Sci., 2015. 587:73-103. doi:10.1016/j.tcs.2015.03.014.
  • [11] Bodei C, Brodo L, Gori R, Levi F, Bernini A, Hermith D. A static analysis for Brane Calculi providing global occurrence counting information. Theoretical Computer Science, 2017. 696:11-51. doi:10.1016/j.tcs.2017.07.008.
  • [12] Bodei C, Bracciali A, Chiarugi D. On deducing causality in metabolic networks. BMC Bioinformatics, 2008. 9(S-4). doi:10.1186/1471-2105-9-S4-S8.
  • [13] Busi N. Causality in Membrane Systems. In: Membrane Computing, 8th International Workshop, WMC 2007, Thessaloniki, Greece, June 25-28, 2007 Revised Selected and Invited Papers. 2007 pp. 160-171. doi:10.1007/978-3-540-77312-2_10.
  • [14] Brijder R, Ehrenfeucht A, Rozenberg G. A note on causalities in reaction systems. ECEASST, 2010. 30. doi:10.14279/tuj.eceasst.30.429.
  • [15] Barbuti R, Gori R, Levi F, Milazzo P. Investigating dynamic causalities in reaction systems. Theoretical Computer Science, 2016. 623:114-145. doi:10.1016/j.tcs.2015.11.041.
  • [16] Barbuti R, Gori R, Levi F, Milazzo P. Specialized Predictor for Reaction Systems with Context Properties. In: Proc. of the 24th Int. Workshop on Concurrency, Specification and Programming, CS&P 2015. 2015 pp. 31-43.
  • [17] Barbuti R, Gori R, Levi F, Milazzo P. Specialized Predictor for Reaction Systems with Context Properties. Fundamenta Informaticae, 2016. 147(2-3):173-191. doi:10.3233/FI-2016-1403.
  • [18] Barbuti R, Gori R, Milazzo P. Multiset Patterns and Their Application to Dynamic Causalities in Membrane Systems. In: Membrane Computing - 18th International Conference, CMC 2017, Bradford, UK, July 25-28, 2017, Revised Selected Papers. 2017 pp. 54-73. doi:10.1007/978-3-319-73359-3_4.
  • [19] Barbuti R, Gori R, Levi F, Milazzo P. Generalized contexts for reaction systems: definition and study of dynamic causalities. Acta Inf., 2018. 55(3):227-267. doi:10.1007/s00236-017-0296-3.
  • [20] Barbuti R, Gori R, Milazzo P. Predictors for flat membrane systems. Theor. Comput. Sci., 2018. 736:79-102. doi:10.1016/j.tcs.2018.04.007.
  • [21] Dennunzio A, Formenti E, Manzoni L, Porreca AE. Ancestors, descendants, and gardens of eden in reaction systems. Theoretical Computer Science, 2015. 608(1):16-26. doi:10.1016/j.tcs.2015.05.046.
  • [22] Gori R, Gruska D, Milazzo P. Studying Opacity of Reaction Systems through Formula Based Predictors. Fundamenta Informaticae, 2019. 165(3-4):303-319. doi:10.3233/FI-2019-1787.
  • [23] Goguen JA, Meseguer J. Security policies and security models. In: 1982 IEEE Symposium on Security and Privacy. IEEE, 1982 pp. 11-11.
  • [24] Bryans JW, Koutny M, Mazaré L, Ryan PY. Opacity generalised to transition systems. In: International Workshop on Formal Aspects in Security and Trust. Springer, 2005 pp. 81-95. doi:10.1007/11679219_7.
  • [25] Bryans J, Koutny M, Ryan P. Modelling non-deducibility using Petri Nets. In: Proc. of the 2nd International Workshop on Security Issues with Petri Nets and other Computational Models. 2004.
  • [26] Gori R, Gruska D, Milazzo P. Hidden States in Reaction Systems. In: 27th International Workshop on Concurrency, Specification and Programming, CS and P 2018, volume 2240. CEUR-WS, 2018 pp. 1-14.
  • [27] Murray A, Hunt T. The Cell Cycle. Oxford Univ.Press, New York, 1993. ISBN: 9780195095296.
  • [28] Spellman P, Sherlock G, Zhang M, Iyer V, Anders K, Eisen M, Brown P, Botstein D, Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell, 1998. 9(12):3273-3297. doi:10.1091/mbc.9.12.3273.
  • [29] Li F, Long T, Lu Y, Ouyang Q, Tang C. The yeast cell-cycle network is robustly designed. Proceedings of the National Academy of Sciences, 2004. 101(14):4781-4786. doi:10.1073/pnas.0305937101.
  • [30] Shao B, Liu X, Zhang D, Wu J, Ouyang Q. From Boolean Network Model to Continuous Model Helps in Design of Functional Circuits. PLOS ONE, 2015. 10(6):1-12. doi:10.1371/journal.pone.0128630.
  • [31] Sassanfar M, Roberts JW. Nature of the SOS-inducing signal in Escherichia coli: The involvement of DNA replication. Journal of Molecular Biology, 1990. 212(1):79-96. doi:10.1016/0022-2836(90)90306-7.
  • [32] Gardner TS, di Bernardo D, Lorenz D, Collins JJ. Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling. Science, 2003. 301(5629):102-105. doi:10.1126/science.1081900.
  • [33] Barbuti R, Bernasconi A, Gori R, Milazzo P. Characterization and Computation of Ancestors in Reaction Systems. In: Soft Computing. 2019 Submitted for pubblication.
  • [34] Barbuti R, Bernasconi A, Gori R, Milazzo P. Computing Preimages and Ancestors in Reaction Systems. In: Theory and Practice of Natural Computing - 7th International Conference, TPNC 2018, Dublin, Ireland, December 12-14, 2018, Proceedings. 2018 pp. 23-35. doi:10.1007/978-3-030-04070-3_2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b53fc31-ed34-470b-a23e-490c3fb00afc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.