PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reverse engineering of parts with asymmetrical properties using replacement materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reverse engineering (RE) aims at the reproduction of products following a detailed examination of their construction or composition. Nowadays, industrial applications of RE were boosted by combining it with additive manufacturing. Printing of reverse-engineered elements has become an option particularly when spare parts are needed. In this paper, a case study was presented that explains how such an approach can be implemented in the case of products with asymmetric mechanical properties and using replacement materials. In this case study, a reverse engineering application was conducted on a textile machine spare part. To this end, the nearest material was selected to the actual material selection and some mechanical tests were made to validate it. Next, a replacement part was designed by following the asymmetric push-in pull-out characteristic. Finally, the finite element analysis with Additive Manufacturing was combined and validated experimentally.
Rocznik
Strony
250--258
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
  • Faculty of Mechanical Engineering, Gaziantep University, Osmangazi, Üniversite Blv., 27410 Sehitkamil/Gaziantep, Turkiye
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
  • Technology Applied Sp. z o.o., ul. Wiejska 42/3, 15-509 Sobolewo, Poland
  • Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, ul. Wiejska 45E, 15-351 Bialystok, Poland
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
Bibliografia
  • 1. The 3R Initiative, https://www.env.go.jp/recycle/3r/en/outline.html (accessed March 11, 2022).
  • 2. Peng S, Ping J, Li T, et al. Environmental benefits of remanufacturing mechanical products: a harmonized meta-analysis of comparative life cycle assessment studies. Journal of Environmental Management; 306. 2022. DOI: 10.1016/J.JENVMAN.2022.114479.
  • 3. Geng Z, Sabbaghi A, Bidanda B. Reconstructing Original Design: Process Planning for Reverse Engineering. DOI: 10.1080/24725854.2022.2040761.
  • 4. Shahrubudin N, Lee TC, Ramlan R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manufacturing 2019;35:1286–1296.
  • 5. Harris CG, Jursik NJS, Rochefort WE, et al. Additive Manufacturing With Soft TPU – Adhesion Strength in Multimaterial Flexible Joints. Front Mech Eng 2019;5:37.
  • 6. Xiao J, Gao Y. The manufacture of 3D printing of medical grade TPU. Progress in Additive Manufacturing 2017;3:117–123.
  • 7. Haryńska A, Gubanska I, Kucinska-Lipka J, et al. Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology. Polymers (Basel); 10. Epub ahead of print November 25, 2018. DOI: 10.3390/POLYM10121304.
  • 8. Herzberger J, Sirrine JM, Williams CB, et al. Polymer Design for 3D Printing Elastomers: Recent Advances in Structure, Properties, and Printing. Progress in Polymer Science 2019;97:101144.
  • 9. Rodríguez-Parada L, de la Rosa S, Mayuet PF. Influence of 3D-Printed TPU Properties for the Design of Elastic Products. Polymers (Basel) 2021;13:2519.
  • 10. American Chemistry Council. Thermoplastic Polyurethanes Bridge the Gap between Rubber and Plastics, https://www.americanchemistry.com/industry-groups/center-for-the-polyurethanes-industry-cpi/resources/library/thermoplastic-polyurethanes-bridge-the-gap-between-rubber-and-plastics (2002, accessed January 17, 2022).
  • 11. Xu T, Shen W, Lin X, et al. Mechanical properties of additively manufactured thermoplastic polyurethane (TPU) material affected by various processing parameters. Polymers (Basel) 2020;12:1–16.
  • 12. Lee H, Eom RI, Lee Y. Evaluation of the mechanical properties of porous thermoplastic polyurethane obtained by 3D printing for protective gear. Advances in Materials Science and Engineering; 2019. Epub ahead of print 2019. DOI: 10.1155/2019/5838361.
  • 13. Lu QW, Macosko CW, Horrion J. Compatibilized blends of thermoplastic polyurethane (TPU) and polypropylene. Macromo-lecular Symposia 2003;198:221–232.
  • 14. Mi HY, Salick MR, Jing X, et al. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Materials Science and Engineering: C 2013;33:4767–4776.
  • 15. Li W, Liu J, Hao C, et al. Interaction of thermoplastic polyurethane with polyamide 1212 and its influence on the thermal and mechanical properties of TPU/PA1212 blends. Polymer Engineering & Science 2008;48:249–256.
  • 16. Feng F, Ye L. Morphologies and mechanical properties of poly-lactide/thermoplastic polyurethane elastomer blends. Journal of Applied Polymer Science 2011;119:2778–2783.
  • 17. Rodríguez L, Naya G, Bienvenido R. Study for the selection of 3D printing parameters for the design of TPU products. IOP Conference Series: Materials Science and Engineering 2021;1193:012035.
  • 18. Schmid M, Amado A, Wegener K. Polymer powders for selective laser sintering (SLS). AIP Conference Proceedings; 1664. Epub ahead of print May 22, 2015. DOI: 10.1063/1.4918516.
  • 19. Lupone F, Padovano E, Casamento F, et al. Process Phenomena and Material Properties in Selective Laser Sintering of Polymers: A Review. Materials 2022, 2021;15:183.
  • 20. Shen F, Yuan S, Guo Y, et al. Energy Absorption of Thermoplastic Polyurethane Lattice Structures via 3D Printing: Modeling and Prediction. International Journal of Applied Mechanics; 8. Epub ahead of print 2016. DOI: 10.1142/S1758825116400068.
  • 21. Kanbur Y, Tayfun U. Development of multifunctional polyurethane elastomer composites containing fullerene: Mechanical, damping, thermal, and flammability behaviors. Journal of Elastomers and Plastics 2019;51:262–279.
  • 22. Beloshenko V, Beygelzimer Y, Chishko V, et al. Mechanical properties of flexible tpu-based 3d printed lattice structures: Role of lattice cut direction and architecture. Polymers (Basel) 2021;13:1–11.
  • 23. Ursini C, Collini L. Fdm layering deposition effects on mechanical response of tpu lattice structures. Materials; 14. Epub ahead of print 2021. DOI: 10.3390/ma14195645.
  • 24. Beloshenko V, Beygelzimer Y, Chishko V, et al. Mechanical Properties of Thermoplastic Polyurethane-Based Three-Dimensional-Printed Lattice Structures: Role of Build Orientation, Loading Direction, and Filler. 3D Printing and Additive Manufacturing 2021; 3dp.2021.0031.
  • 25. Ponticelli GS, Tagliaferri F, Venettacci S, et al. Re-Engineering of an Impeller for Submersible Electric Pump to Be Produced by Selective Laser Melting. Applied Sciences 2021, Vol 11, Page 7375 2021;11: 7375.
  • 26. Hernández F, Fragoso A. Fabrication of a Stainless-Steel Pump Impeller by Integrated 3D Sand Printing and Casting: Mechanical Characterization and Performance Study in a Chemical Plant. Applied Sciences 2022;12:3539.
  • 27. Zglobicka I, Chmielewska A, Topal E, et al. 3D Diatom–Designed and Selective Laser Melting (SLM) Manufactured Metallic Structures. Scientific Reports. 2019;9:1–9.
  • 28. Zaoui M, Mohamad BA, Amroune S, et al. Manufacturing of rapid prototypes of mechanical parts using reverse engineering and 3D Printing. J Serbian Soc Comput Mech 2021;15:1–10.
  • 29. Subeshan B, Abdulaziz A, Khan Z, et al. Reverse Engineering of Aerospace Components Utilizing Additive Manufacturing Technology. 2022;238–246.
  • 30. Goodridge RD, Tuck CJ, Hague RJM. Laser sintering of polyamides and other polymers. Progress in Materials Science 2012;57:229–267.
  • 31. Gueche YA, Sanchez-Ballester NM, Cailleaux S, et al. Selective Laser Sintering (SLS), a New Chapter in the Production of Solid Oral Forms (SOFs) by 3D Printing. Pharmaceutics. 2021; 13: 1212.
  • 32. Tagliaferri V, Trovalusci F, Guarino S, et al. Environmental and Economic Analysis of FDM, SLS and MJF Additive Manufacturing Technologies. Materials. 2019;12:4161.
  • 33. Kellens K, Renaldi R, Dewulf W, et al. Environmental impact modeling of selective laser sintering processes. Rapid Prototyping Journal 2014;20:459–470.
  • 34. ISO527-2: Plastics — Determination of tensile properties — Part 2: Test conditions for moulding and extrusion plastics. International Standard.
  • 35. ISO 7743: Rubber, vulcanized or thermoplastic — Determination of compression stress-strain properties. International Standard; 2017.
  • 36. Bates SRG, Farrow IR, Trask RS. Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densities. Materials and Design 2019;162:130–142.
  • 37. Additive Manufacturing solutions & industrial 3D printer by EOS, https://www.eos.info/en (accessed January 18, 2022).
  • 38. [Technology Applied - Zaufany dostawca części dla przemysłu, https://ta.parts/ (accessed January 18, 2022).
  • 39. EOS. Thermoplastisches Polyurethan EOS TPU 1301, https://webcache.googleusercontent.com/search?q=cache:9OGEoHlUXOwJ:https://www.eos.info/03_system-related-assets/material-related-contents/polymer-materials-and-examples/tpu-1301/material_datasheet_eos_tpu_1301_core_de_web.pdf+&cd=3&hl=tr&ct=clnk&gl=pl&cl (accessed January 11, 2022).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b53d7b2-0340-4b5e-9b8b-1373bd62c83e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.